Citation: Nan-Yang Chen, Li-Ping Ren, Min-Ming Zou, Zhi-Ping Xu, Xu-Sheng Shao, Xiao-Yong Xu, Zhong Li. Design, synthesis and insecticidal activity of spiro heterocycle containing neonicotinoid analogs[J]. Chinese Chemical Letters, ;2014, 25(2): 197-200. shu

Design, synthesis and insecticidal activity of spiro heterocycle containing neonicotinoid analogs

  • Corresponding author: Xu-Sheng Shao,  Zhong Li, 
  • Received Date: 23 September 2013
    Available Online: 25 November 2013

    Fund Project: This work was financial supported by National Basic Research Program of China (973 Program, No. 2010CB126100) (973 Program, No. 2010CB126100) National High Technology Research Development Program of China (863 Program, No. 2011AA10A207) (863 Program, No. 2011AA10A207) Key Projects in the National Science & Technology Pillar Program (No. 2011BAE06B05) (No. 2011BAE06B05) National Natural Science Foundation of China (No. 21372079) (No. 21372079) Shanghai Education Committee (No. 12ZZ057) (No. 12ZZ057)

  • Spiro heterocycles frequently occur in bioactive molecules. In the pursuit of neonicotinoids with spiro heterocycles, three types of novel neonicotinoids with spirobenzofuranone, spirooxindole or spiroacenaphythylenone framework were designed and synthesized. Insecticidal evaluation showed that some of spirobenzofuranone containing neonicotinoids exhibited moderate activity against cowpea aphid, armyworm or brown planthopper.
  • 加载中
    1. [1]

      [1] R. Rios, Enantioselective methodologies for the synthesis of spiro compounds, Chem. Soc. Rev. 41 (2012) 1060-1074.

    2. [2]

      [2] T. Jin, M. Himuro, Y. Yamamoto, Triflic acid catalyzed synthesis of spirocycles via acetylene cations, Angew. Chem. Int. Ed. 48 (2009) 5893-5896.

    3. [3]

      [3] G.S. Singh, Z.Y. Desta, Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks, Chem. Rev. 112 (2012) 6104-6155.

    4. [4]

      [4] H. Diirr, R. Gleiter, Spiroconjugation, Angew. Chem. Int. Ed. 17 (1978) 559-569.

    5. [5]

      [5] B. Gleiter, H. Hoffmann, H. Irngartinger, M. Nixdorf, Donor-acceptor spiro-compounds- syntheses, structures and electronic properties, Chem. Ber. 127 (1994) 2215-2224.

    6. [6]

      [6] J. Sun, Y.J. Xie, C.G. Yan, Construction of dispirocyclopentanebisoxindoles via selfdomino michael-aldol reactions of 3-phenacylideneoxindoles, J. Org. Chem. 78 (2013) 8354-8365.

    7. [7]

      [7] K. Murai, H. Komatsu, R. Nagao, H. Fujioka, Oxidative rearrangement of spiro cyclobutane cyclic aminals: efficient construction of bicyclic amidines, Org. Lett. 14 (2012) 772-775.

    8. [8]

      [8] W.Y. Xu, Y.M. Jia, J.K. Yang, Z.T. Huang, C.Y. Yu, Reactions of heterocyclic detene aminals with 2-[3-oxoisobenzofuran-1(3H)-ylidenne]malononitrile: synthesis of novel polyfunctionalized 1,4-dihydropyridine-fused 1,3-diazaheterocycles, Synlett 11 (2010) 1682-1684.

    9. [9]

      [9] F. Shi, G.J. Xing, R.Y. Zhu, W. Tan, S.J. Tu, A catalytic asymmetric isatin-involved povarov reaction: diastereo- and enantioselective construction of spiro[indolin- 3,2'-quinoline] scaffold, Org. Lett. 15 (2013) 1128-1131.

    10. [10]

      [10] S. Pal, M.N. Khan, S. Karamthulla, S.J. Abbas, L.H. Choudhury, One pot fourcomponent reaction for the efficient synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-3'-carboxylate derivatives, Tetrahedron Lett. 54 (2013) 5434-5440.

    11. [11]

      [11] F.Y. Miyake, K. Yakushijin, D.A. Horne, Preparation and synthetic applications of 2-halotryptamines: synthesis of elacomine and isoelacomine, Org. Lett. 6 (2004) 711-713.

    12. [12]

      [12] B. Tan, N.R. Candeias, C.F. Barbas Ⅲ, Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst, Nat. Chem. 3 (2011) 473-477.

    13. [13]

      [13] S. Rapposelli, M.C. Breschi, V. Calderone, et al.,A. Balsamo, Synthesis and biological evaluation of 5-membered spiro heterocycle-benzopyran derivatives against myocardial ischemia, Eur. J. Med. Chem. 46 (2011) 966-973.

    14. [14]

      [14] C.W. Lee, R. Lira, J. Dutra, K. Ogilvie, et al., Stereoselective synthesis of spiropiperidines as BACE-1 aspartyl protease inhibitors via late stage N-arylation of a 1,8-diazaspiro[4.5]dec-3-en-2-one pharmacophore, J. Org. Chem. 78 (2013) 2661-2669.

    15. [15]

      [15] M. Rottmann, C. McNamara, B.K.S. Yeung, et al., Spiroindolones, a potent compound class for the treatment of malaria, Science 329 (2010) 1175-1180.

    16. [16]

      [16] A. Elbert, M. Schindler, R. Nauen, P. Jeschke, Overview of the status and global strategy for neonicotinoids, J. Agric. Food Chem. 59 (2011) 2897-2908.

    17. [17]

      [17] S. Kagabu, Discovery of imidacloprid and further developments from strategic molecular designs, J. Agric. Food Chem. 59 (2011) 2887-2896.

    18. [18]

      [18] M. Tomizawa, J.E. Casida, Molecular recognition of neonicotinoid insecticides: the determinants of life or death, Acc. Chem. Res. 42 (2009) 260-269.

    19. [19]

      [19] R. Nauen, I. Denholm, Resistance of insect pests to neonicotinoid insecticides: current status and future prospects, Arch. Insect. Biochem. Physiol. 58 (2005) 200-215.

    20. [20]

      [20] M. Henry, M. Bé guin, F. Requier, et al., A common pesticide decreases foraging success and survival in honey bees, Science 336 (2012) 348-350.

    21. [21]

      [21] S.A. Cameron, J.D. Lozier, J.P. Strange, et al., Patterns of widespread decline in North American bumble bees, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 662-667.

    22. [22]

      [22] X.S. Shao, P.W. Lee, Z.W. Liu, et al., cis-Configuration: a new tactic/rationale for neonicotinoid molecular design, J. Agric. Food Chem. 59 (2011) 2943-2949.

    23. [23]

      [23] X.S. Shao, Z. Li, X.H. Qian, X.Y. Xu, Design, synthesis and insecticidal activities of novel analogues of neonicotinoids: replacement of nitromethylene with nitroconjugated system, J. Agric. Food Chem. 57 (2009) 951-957.

    24. [24]

      [24] X.S.Shao,H.Fu, X.Y.Xu, etal.,Divalentandoxabridgedneonicotinoidsconstructedby dialdehydes and nitromethylene analogues of imidacloprid: design, synthesis, crystal structure, and insecticidal activities, J. Agric. Food Chem. 58 (2010) 2696-2702.

    25. [25]

      [25] W.W. Zhang, X.B. Yang, W.D. Chen, et al., Design, multicomponet synthesis, and bioactivities of novel neonicotinoid analogues with 1,4-dihydropyridine scaffold, J. Agric. Food Chem. 58 (2010) 2741-2745.

    26. [26]

      [26] A. Alizadeh, T. Firuzyar, A. Mikaeili, Efficient one-pot synthesis of spirooxindole derivatives containing 1,4-dihydropyridine-fused-1,3-diazaheterocycle fragments via four-component reaction, Synthesis 22 (2010) 3913-3917.

  • 加载中
    1. [1]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    4. [4]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    5. [5]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    6. [6]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    7. [7]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    8. [8]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    9. [9]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    10. [10]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    11. [11]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    12. [12]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    13. [13]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    14. [14]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    15. [15]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    16. [16]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    19. [19]

      Qi TanRun-Zhu FanWencong YangGe ZouTao ChenJianying WuBo WangSheng YinZhigang She . (+)/(−)-Mycosphatide A, a pair of highly oxidized polyketides with lipid-lowering activity from the mangrove endophytic fungus Mycosphaerella sp. SYSU-DZG01. Chinese Chemical Letters, 2024, 35(9): 109390-. doi: 10.1016/j.cclet.2023.109390

    20. [20]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

Metrics
  • PDF Downloads(0)
  • Abstract views(771)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return