Citation: Xiao-Gang Wang, Ai-E Wang, Pei-Qiang Huang. A concise formal stereoselective total synthesis of (—)-swainsonine[J]. Chinese Chemical Letters, ;2014, 25(2): 193-196. shu

A concise formal stereoselective total synthesis of (—)-swainsonine

  • Corresponding author: Pei-Qiang Huang, 
  • Received Date: 28 August 2013
    Available Online: 8 November 2013

  • A short formal stereoselective synthesis of (—)-swainsonine (1) is described. Our synthesis started with the versatile building block (R)-3-benzyloxyglutarimide 5. Through controlled regioselective reduction, Ley's-sulfone chemistry (N-α-sulfonylation and ZnCl2-catalyzed N-α-amidovinylation), an RCM reaction, and an amide reduction, the synthesis of unsaturated indolizidine (8R,8aS)-3 has been achieved in five steps. The indolizidine (8R,8aS)-3 is an advanced intermediate toward the synthesis of (—)-swainsonine (1).
  • 加载中
    1. [1]

      [1] (a) B.G. Winchester, Iminosugars: from botanical curiosities to licensed drugs, Tetrahedron: Asymmetry 20 (2009) 645-651; (b) H. Chen, D.Y. Wang, X.L. Li, Advances in glycosyltransferase inhibitors, Chin. J. Org. Chem. 29 (2009) 703-715.

    2. [2]

      [2] (a) F.P. Guengerich, S.J. DiMari, H.P. Broquist, Isolation and characterization of a lpyrindine fungal alkaloid, J. Am. Chem. Soc. 95 (1973) 2055-2056; (b) S.M. Colegate, P.R. Dorling, C.R. Huxtable, A spectroscopic investigation of swainsonine: an a-mannosidase inhibitor isolated from Swainsona canescens, Aust. J. Chem. 32 (1979) 2257-2264.

    3. [3]

      [3] (a) P.R. Dorling, C.R. Huxtable, P. Vogel, Lysosomal storage in Swainsona spp. toxicosis: an induced mannosidosis, Neuropathol. Appl. Neurobiol. 4 (1978) 285- 295; (b) P.E. Shaheen, W. Stadler, P. Elson, et al., Phase Ⅱ study of the efficacy and safety of oral GD0039 in patients with locally advanced or metastatic renal cell carcinoma, Invest. New Drugs 23 (2005) 577-581.

    4. [4]

      [4] (a) A.E. Nemr, Synthetic methods for the stereoisomers of swainsonine and its analogues, Tetrahedron 56 (2000) 8579-8629; (b) S.G. Pyne, Recent developments on the synthesis of (—)-swainsonine and analogues, Curr. Org. Synth. 2 (2005) 39-57; (c) L.F. Nie, H. Ba, A. Haji, Progress in total synthesis of swainsonine, Chin. J. Org. Chem. 29 (2009) 1354-1361.

    5. [5]

      [5] (a) G. Archibald, C.P. Lin, P. Boyd, D. Barker, V. Caprio, A divergent approach to 3- piperidinols: a concise syntheses of (+)-swainsonine and access to the 1-substituted quinolizidine skeleton, J. Org. Chem. 77 (2012) 7968-7980; (b) H.G. Choi, J.H. Kwon, J.C. Kim, et al., A formal synthesis of (—)-swainsonine from a chiral aziridine, Tetrahedron Lett. 51 (2010) 3284-3285; (c) R.W. Bates, M.R. Dewey, A formal synthesis of swainsonine by gold-catalyzed allene cyclization, Org. Lett. 11 (2009) 3706-3708; (d) H.Y. Kwon, C.M. Park, S.B. Lee, J.H. Youn, S.H. Kang, Asymmetric iodocyclization catalyzed by salen-CrCl: its synthetic application to swainsonine, Chem. Eur. J. 14 (2008) 1023-1028; (e) C.W.G. Au, S.G. Pyne, Asymmetric synthesis of anti-1 2-amino alcohols via the borono-Mannich reaction: a formal synthesis of (—)-swainsonine, J. Org. Chem. 71 (2006) 7097-7099; (f) J. Seayad, B. List, Asymmetric organocatalysis, Org. Biomol. Chem. 3 (2005) 719-724; (g) N. Buschmann, A. Rückert, S. Blechert, A new approach to (—)-swainsonine by ruthenium-catalyzed ring rearrangement, J. Org. Chem. 67 (2002) 4325-4329; (h) I. Dechamps, O.G. Pardo, J. Cossy, Enantioselective ring expansion of prolinol derivatives. Two formal syntheses of (—)-swainsonine, Tetrahedron 63 (2007) 9082-9091; (i) J. de Vicente, R.G. Arrayás, J. Cañada, J.C. Carretero, Stereoselective synthesis of (—)-swainsonine and 1,2-di-epi-swainsonine from g-hydroxy-a,b-unsaturated sulfones, Synlett (2000) 53-56; (j) T. Oishi, T. Iwakuma, M. Hirama, S. Itô, Stereoselective synthesis of (+)- swainsonine and (—)-8,8a-di-epi-swainsonine, Synlett (1995) 404-406.

    6. [6]

      [6] (a) K.B. Lindsay, S.J. Pyne, Asymmetric synthesis of (—)-swainsonine, (+)-1,2-diepi- swainsonine, and (+)-1,2,8-tri-epi-swainsonine, J. Org. Chem. 67 (2002) 7774-7780; (b) M.J. Chen, Y.M. Tsai, Radical cyclizations of acylsilanes in the synthesis of (+)- swainsonine and formal synthesis of (—)-epiquinamide, Tetrahedron 67 (2011) 1564-1574.

    7. [7]

      [7] (a) V. Dhand, J.A. Draper, J. Moore, R. Britton, A short, organocatalytic formal synthesis of (—)-swainsonineand related alkaloids,,Org. Lett.15(2013) 1914-1917; (b) J. Louvel, F. Chemla, E. Demont, F. Ferreira, A. Pérez-Luna, Synthesis of (—)- swainsonine and (—)-8-epi-swainsonine by the addition of allenylmetals to chiral a,b-alkoxy sulfinylimines, Org. Lett. 13 (2011) 6452-6455; (c) D.J. Wardrop, E.J. Bowen, Nitrenium ion-mediated alkene bis-cyclofunctionalization: total synthesis of (—)-swainsonine, Org. Lett. 13 (2011) 2376- 2379; (d) X.L. Wang, W.F. Huang, X.S. Lei, et al., A facile synthesis of 1,4-dideoxy- 1,4-imino-L-ribitol (LRB) and (—)-8a-epi-swainsonine from D-glutamic acid, Tetrahedron 67 (2011) 4919-4923; (e) S.J. Oxenford, S.P. Moore, G. Carbone, et al., Asymmetric synthesis via aziridinium ions: exploring the stereospecificity of the ring opening of aziridinium ions and a formal synthesis of (—)-swainsonine, Tetrahedron: Asymmetry 21 (2010) 1563-1568; (f) Y.S. Tian, J.E. Joo, B.S. Koog, et al., Asymmetric synthesis of (—)-swainsonine, J. Org. Chem. 74 (2009) 3962-3965; (g) H.B. Guo, G.A. O'Doherty, De novo asymmetric syntheses of D-, L- and 8- epi-D-swainsonine, Tetrahedron 64 (2008) 304-313.

    8. [8]

      [8] (a) K.J. Xiao, Y. Wang, Y.H. Huang, X.G. Wang, P.Q. Huang, A direct and general method for the reductive alkylation of tertiary lactams/amides: application to the step economical synthesis of alkaloid (—)-morusimic acid D, J. Org. Chem. 78 (2013) 8305-8311; (b) K.J. Xiao, J.M. Luo, X.E. Xia, Y. Wang, P.Q. Huang, General one-pot reductive gem-bis-alkylation of tertiary lactams/amides: rapid construction of 1-azaspirocycles and formal total synthesis of (±)-cephalotaxine, Chem. Eur. J. 19 (2013) 13075-13086; (c) X.J. Dai, P.Q. Huang, A short and flexible synthetic approach to the naturally occurring racemic neoclausenamide and its analogs, Chin. J. Chem. 30 (2012) 1953-1956; (d) J. Chen, A.E. Wang, H.H. Huo, P.Q. Huang, Progress on the total synthesis of natural products in China: from 2006 to 2010, Sci. China-Chem. 55 (2012) 1175- 1212; (e) Y.H. Wang, W. Ou, L.F. Xie, J.L. Ye, P.Q. Huang, Towards reaction control: cisdiastereoselective reductive dehydroxylation of 5-alkyl-4-benzyloxy-5-hydroxy-2- pyrrolidinones, Asian J. Org. Chem. 1 (2012) 359-365; (f) K.J. Xiao, Y.H. Huang, P.Q. Huang, General direct transformation of secondary amides to ketones via amide activation, Acta Chim. Sin. 70 (2012) 1917-1922; (g) B. Teng, J.F. Zheng, H.Y. Huang, P.Q. Huang, Enantioselective synthesis of glutarimide alkaloids cordiarimides A, B, crotonimides A, B, and julocrotine, Chin. J. Chem. 29 (2011) 1312-1318; (h) Q.L.Peng,S.P.Luo,X.E.Xia,L.X.Liu,P.Q.Huang,Thefour-steptotalsynthesisof (-)- chaetominine, Chem. Commun. 49 (2013), http://dx.doi.org/10.1039/C3CC48833K.

    9. [9]

      [9] H.K. Zhang, S.Q. Xu, J.J. Zhuang, J.L. Ye, P.Q. Huang, A flexible enantioselective approach to 3,4-dihydroxyprolinol derivatives by SmI2-mediated reductive coupling of chiral nitrone with ketones/aldehydes, Tetrahedron 68 (2012) 6656- 6664.

    10. [10]

      [10] (a) P.Q. Huang, Asymmetric synthesis of hydroxylated pyrrolidines, piperidines and related bioactive compounds: from N-acyliminium chemistry to N-α-carbanion chemistry, Synlett (2006) 1133-1149; (b) H.K. Zhang, X. Li, H. Huang, P.Q. Huang, Asymmetric syntheses of (8R,8aS)- and (8R,8aR)-8-hydroxy-5-indolizidinones: two promising oxygenated indolizidine building blocks, Sci. Sin. Chim. 41 (2011) 732-740 (in Chinese); (c) H.K. Zhang, X. Li, H. Huang, P.Q. Huang, Asymmetric syntheses of (8R,8aS)- and (8R,8aR)-8-hydroxy-5-indolizidinones: two promising oxygenated indolizidine building blocks, Sci. China-Chem. 54 (2011) 737-744.

    11. [11]

      [11] (a) A. Deiters, S.F. Martin, Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis, Chem. Rev. 104 (2004) 2199-2238; (b) F.X. Felpin, J. Lebreton, Recent advances in the total synthesis of piperidine and pyrrolidine natural alkaloids with ring-closing metathesis as a key step, Eur. J. Org. Chem. (2003) 3693-3712.

    12. [12]

      [12] (a) D.S. Brown, P. Charreau, T. Hansson, S.V. Ley, Substitution reactions of 2- phenylsulphonyl-piperidines and -pyrrolidines with carbon nucleophiles: synthesis of the pyrrolidine alkaloids norruspoline and ruspolinone, Tetrahedron 47 (1991) 1311-1328; (b) P.Q. Huang, X. Tang, A.Q. Chen, An alternative stereoselective synthesis of protected trans-5-alkyl-4-hydroxy-2-pyrrolidinones, Synth. Commun. 13 (2000) 2259-2268; (c) G.W. David, W.H. Richard Jr., S.F. Martin, Concise formal synthesis of (—)- peduncularine via ring-closing metathesis, Org. Lett. 5 (2003) 3523-3525; (d) X.G. Wang, A. E Wang, Y. Hao, Y.P. Ruan, P.Q. Huang, Modular enantioselective synthesis of 8-aza-prostaglandin E1, J. Org. Chem. 78 (2013) 9488-9493.

    13. [13]

      [13] (a) A. Yazici, S.G. Pyne, Intermolecular addition reactions of N-acyliminium ions (part I), Synthesis (2009) 339-368; (b) A. Yazici, S.G. Pyne, Intermolecular addition reactions of N-acyliminium ions (part Ⅱ), Synthesis (2009) 513-541.

    14. [14]

      [14] G.C. Fu, S.T. Nguyen, R.H. Grubbs, Catalytic ring-closing metathesis of functionalized dienes by a ruthenium carbene complex, J. Am. Chem. Soc. 115 (1993) 9856-9857.

    15. [15]

      [15] H.K. Lee, J.S. Chun, C.S. Pak, Facile transformation of 2-azetidinones to 2-piperidones: application to the synthesis of the indolizidine skeleton and (8S,8aS)- perhydro-8-indolizinol, J. Org. Chem. 68 (2003) 2471-2474.

  • 加载中
    1. [1]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    2. [2]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    3. [3]

      Xiao-Gang WangAi-E WangPei-Qiang Huang . Corrigendum to "A concise formal stereoselective total synthesis of (–)-swainsonine" [Chin Chem Lett 25 (2014) 193–196]. Chinese Chemical Letters, 2025, 36(3): 110597-. doi: 10.1016/j.cclet.2024.110597

    4. [4]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

    5. [5]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    6. [6]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    7. [7]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    8. [8]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    9. [9]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    10. [10]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    11. [11]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    12. [12]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    13. [13]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    14. [14]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    15. [15]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    16. [16]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    17. [17]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    18. [18]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    19. [19]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(0)
  • Abstract views(792)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return