Citation: Shu-Qing Lv, Yong-Sheng Zhao. The effect of metal ions with different valences on the retardation of soil-bentonite barrier materials and its mechanism[J]. Chinese Chemical Letters, ;2013, 24(12): 1075-1079. shu

The effect of metal ions with different valences on the retardation of soil-bentonite barrier materials and its mechanism

  • Corresponding author: Shu-Qing Lv, 
  • Received Date: 5 June 2013
    Available Online: 12 July 2013

    Fund Project: This work was supported by Public Welfare Special Research of National Environmental Protection of China (No. 201309004). (No. 201309004)

  • In this paper, with K+, Ca2+ and Fe3+ as the objects of study, retardation of soil-bentonite (SB) barrier materials for metal ions with different valences is investigated, and the adsorption mechanism, migration patterns and permeation behavior are explored so as to provide a theoretical basis for their application. The results show that the adsorption process for metal ions with different valences by SB barriermaterials is fast, and the higher the valence, the greater the adsorption capacity. The fitting of the adsorption process conforms to pseudo-second-order adsorption kinetics and Langmuir-Freundlich adsorption equation, which explains that chemical adsorption is the dominating state and that the SB surface has certain heterogeneity. The permeability coefficient of K+, Ca2+ and Fe3+ in SB each has a maximum and the higher the valence, the sooner the maximum appears. Also the higher the valence, the more obvious the effect on SB retardation performance; and the sooner the ion breaks through the barrier wall completely, that is, the wall's retardation performance for higher valent ions may decline. 2013 Shu-Qing Lv. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
  • 加载中
    1. [1]

      [1] Y.S. Zhao, Groundwater pollution control and remediation, Jilin. Univ., Earth Sci. Ed. 37 (2007) 303-310.

    2. [2]

      [2] U.S. EPA 542-R-98-005 (1998). http://www.clu-in.org/s.focus/c/pub/i/88/.

    3. [3]

      [3] D.J. D'Appolonia, Soil-bentonite slurry trench cutoffs, Geotech. Eng. Div. 106 (1980) 399-417.

    4. [4]

      [4] T. Yu, W.S. Wu, Q.H. Fan, Sorption of Am(Ⅲ) on Na-bentonite: effect of pH, ionic strength, temperature and humic acid, Chin. Chem. Lett. 23 (2012) 1189-1192.

    5. [5]

      [5] I.M.C. Lo, X. Yang, Laboratory investigation of the migration of hydrocarbons in organobentonite, Environ. Sci. Technol. 35 (2001) 620-625.

    6. [6]

      [6] Q. Zhou, M.C. Zhang, C.D. Shuang, Z.Q. Li, A.M. Li, Preparation of a novel magnetic powder resin for the rapid removal of tetracycline in the aquatic environment, Chin. Chem. Lett. 23 (2012) 745-748.

    7. [7]

      [7] M.B. Madhusudana Reddy, M.A. Pasha, Environment friendly protocol for the synthesis of nitriles from aldehydes, Chin. Chem. Lett. 21 (2010) 1025-1028.

    8. [8]

      [8] A. Khandelwal, A.J. Rabideau, Enhancement of soil-bentonite barrier performance with the addition of natural humus, Contam. Hydrol. 45 (2000) 267-282.

    9. [9]

      [9] L.Z. Zhu, B.L. Chen, Use of bentonite-based sorbents in organic pollutant abatements, Process. Chem. 21 (2009) 420-429.

    10. [10]

      [10] C.R. Ryan, S.R. Day, Soil-cement-bentonite slurry walls, GSP 1 (2002) 713-727.

    11. [11]

      [11] H.W. Mott, W.J. Weber, Factors influencing organic contaminant diffusivities in soil-bentonite cutoff barriers, Environ. Sci. Technol. 25 (1991) 1708-1715.

    12. [12]

      [12] A. Khandelwal, A.J. Rabideau, P.L. Shen, Analysis of diffusion and sorption of organic solutes in soil-bentonite barrier materials, Environ. Sci. Technol. 32 (1998) 1333-1339.

    13. [13]

      [13] L.M. Candelaria, M.R. Matsumoto, Effects of NAPL contaminants on the permeability of a soil-bentonite slurry wall material, Transport. Porous Med. 38 (2000) 43-56.

    14. [14]

      [14] M.M. Krol, R.K. Rowe, Diffusion of TCE through soil-bentonite slurry walls, Soil Sediment Contam. 13 (2004) 81-101.

    15. [15]

      [15] S.L. Garvin, G.S. Hayles, The chemical compatibility of cement-bentonite cut-off wall material, Constr. Build. Mater. 13 (1999) 329-341.

    16. [16]

      [16] M. Toor, B. Jin, Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye, Chem. Eng. J. 187 (2012) 79-88.

    17. [17]

      [17] C.E. Lee, S. Chandra, Y.K. Leong, Structural recovery behaviour of kaolin, bentonite and K-montmorillonite slurries, Powder Technol. 223 (2012) 105-109.

    18. [18]

      [18] C. Breen, C.M. Bejarano-Bravo, L. Madrid, et al., Na/Pb, Na/Cd and Pb/Cd exchange on a low iron Texas bentonite in the presence of competing H+ ion, Colloid Surface A 155 (1999) 211-219.

  • 加载中
    1. [1]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    2. [2]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    3. [3]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    4. [4]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    5. [5]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    6. [6]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    7. [7]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    8. [8]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    9. [9]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    10. [10]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    11. [11]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    12. [12]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    13. [13]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    14. [14]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    15. [15]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    16. [16]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    17. [17]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    18. [18]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    19. [19]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    20. [20]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

Metrics
  • PDF Downloads(0)
  • Abstract views(715)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return