Citation: Shu-Qing Lv, Yong-Sheng Zhao. The effect of metal ions with different valences on the retardation of soil-bentonite barrier materials and its mechanism[J]. Chinese Chemical Letters, ;2013, 24(12): 1075-1079.
-
In this paper, with K+, Ca2+ and Fe3+ as the objects of study, retardation of soil-bentonite (SB) barrier materials for metal ions with different valences is investigated, and the adsorption mechanism, migration patterns and permeation behavior are explored so as to provide a theoretical basis for their application. The results show that the adsorption process for metal ions with different valences by SB barriermaterials is fast, and the higher the valence, the greater the adsorption capacity. The fitting of the adsorption process conforms to pseudo-second-order adsorption kinetics and Langmuir-Freundlich adsorption equation, which explains that chemical adsorption is the dominating state and that the SB surface has certain heterogeneity. The permeability coefficient of K+, Ca2+ and Fe3+ in SB each has a maximum and the higher the valence, the sooner the maximum appears. Also the higher the valence, the more obvious the effect on SB retardation performance; and the sooner the ion breaks through the barrier wall completely, that is, the wall's retardation performance for higher valent ions may decline. 2013 Shu-Qing Lv. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
-
Keywords:
- Metal ions,
- Soil-bentonite,
- Barrier materials,
- Retardation,
- Mechanism
-
-
[1]
[1] Y.S. Zhao, Groundwater pollution control and remediation, Jilin. Univ., Earth Sci. Ed. 37 (2007) 303-310.
-
[2]
[2] U.S. EPA 542-R-98-005 (1998). http://www.clu-in.org/s.focus/c/pub/i/88/.
-
[3]
[3] D.J. D'Appolonia, Soil-bentonite slurry trench cutoffs, Geotech. Eng. Div. 106 (1980) 399-417.
-
[4]
[4] T. Yu, W.S. Wu, Q.H. Fan, Sorption of Am(Ⅲ) on Na-bentonite: effect of pH, ionic strength, temperature and humic acid, Chin. Chem. Lett. 23 (2012) 1189-1192.
-
[5]
[5] I.M.C. Lo, X. Yang, Laboratory investigation of the migration of hydrocarbons in organobentonite, Environ. Sci. Technol. 35 (2001) 620-625.
-
[6]
[6] Q. Zhou, M.C. Zhang, C.D. Shuang, Z.Q. Li, A.M. Li, Preparation of a novel magnetic powder resin for the rapid removal of tetracycline in the aquatic environment, Chin. Chem. Lett. 23 (2012) 745-748.
-
[7]
[7] M.B. Madhusudana Reddy, M.A. Pasha, Environment friendly protocol for the synthesis of nitriles from aldehydes, Chin. Chem. Lett. 21 (2010) 1025-1028.
-
[8]
[8] A. Khandelwal, A.J. Rabideau, Enhancement of soil-bentonite barrier performance with the addition of natural humus, Contam. Hydrol. 45 (2000) 267-282.
-
[9]
[9] L.Z. Zhu, B.L. Chen, Use of bentonite-based sorbents in organic pollutant abatements, Process. Chem. 21 (2009) 420-429.
-
[10]
[10] C.R. Ryan, S.R. Day, Soil-cement-bentonite slurry walls, GSP 1 (2002) 713-727.
-
[11]
[11] H.W. Mott, W.J. Weber, Factors influencing organic contaminant diffusivities in soil-bentonite cutoff barriers, Environ. Sci. Technol. 25 (1991) 1708-1715.
-
[12]
[12] A. Khandelwal, A.J. Rabideau, P.L. Shen, Analysis of diffusion and sorption of organic solutes in soil-bentonite barrier materials, Environ. Sci. Technol. 32 (1998) 1333-1339.
-
[13]
[13] L.M. Candelaria, M.R. Matsumoto, Effects of NAPL contaminants on the permeability of a soil-bentonite slurry wall material, Transport. Porous Med. 38 (2000) 43-56.
-
[14]
[14] M.M. Krol, R.K. Rowe, Diffusion of TCE through soil-bentonite slurry walls, Soil Sediment Contam. 13 (2004) 81-101.
-
[15]
[15] S.L. Garvin, G.S. Hayles, The chemical compatibility of cement-bentonite cut-off wall material, Constr. Build. Mater. 13 (1999) 329-341.
-
[16]
[16] M. Toor, B. Jin, Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye, Chem. Eng. J. 187 (2012) 79-88.
-
[17]
[17] C.E. Lee, S. Chandra, Y.K. Leong, Structural recovery behaviour of kaolin, bentonite and K-montmorillonite slurries, Powder Technol. 223 (2012) 105-109.
-
[18]
[18] C. Breen, C.M. Bejarano-Bravo, L. Madrid, et al., Na/Pb, Na/Cd and Pb/Cd exchange on a low iron Texas bentonite in the presence of competing H+ ion, Colloid Surface A 155 (1999) 211-219.
-
[1]
-
-
[1]
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
-
[2]
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
-
[3]
Chong Liu , Nanthi Bolan , Anushka Upamali Rajapaksha , Hailong Wang , Paramasivan Balasubramanian , Pengyan Zhang , Xuan Cuong Nguyen , Fayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960
-
[4]
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
-
[5]
Jiaxuan Wang , Tonghe Liu , Bingxiang Wang , Ziwei Li , Yuzhong Niu , Hou Chen , Ying Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900
-
[6]
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
-
[7]
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
-
[8]
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
-
[9]
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
-
[10]
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
-
[11]
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
-
[12]
Xudong Zhao , Yuxuan Wang , Xinxin Gao , Xinli Gao , Meihua Wang , Hongliang Huang , Baosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901
-
[13]
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
-
[14]
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
-
[15]
Haobo Wang , Fei Wang , Yong Liu , Zhongxiu Liu , Yingjie Miao , Wanhong Zhang , Guangxin Wang , Jiangtao Ji , Qiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589
-
[16]
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
-
[17]
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
-
[18]
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
-
[19]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[20]
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(715)
- HTML views(38)