Citation: Ming-Xian Liu, Li-Hua Gan, Wei Xiong, Da-Zhang Zhu, Zi-Jie Xu, Long-Wu Chen. Partially graphitic micro- and mesoporous carbon microspheres for supercapacitors[J]. Chinese Chemical Letters, ;2013, 24(12): 1037-1040. shu

Partially graphitic micro- and mesoporous carbon microspheres for supercapacitors

  • Corresponding author: Li-Hua Gan, 
  • Received Date: 31 May 2013
    Available Online: 1 July 2013

    Fund Project: The project was supported by the National Natural Science Foundation of China (Nos. 21207099, 21273162) (Nos. 21207099, 21273162) Key Subject of Shanghai Municipal Education Commission (No. J50102) (Nos. 11nm0501000, 12ZR1451100)Fundamental Research Funds for the Central Universities (No. 2011KJ023). (No. J50102)

  • Partially graphitic micro- and mesoporous carbon microspheres (GMMCMs) were synthesized using hydrothermal emulsion polymerization followed by KOH activation and catalytic graphitization. The resulting GMMCMs show micro- and mesopores with a specific surface area of 1113 m2/g, regular spherical shape with diameters of 0.5-1.0 mm and a partially graphitic structure with a low internal resistance of 0.34 Ω. The graphitic carbons as electrode for supercapacitor exhibit a fast ion-transport and rapid charge-discharge feature, and a high-rate electrochemical performance. The typical GMMCM electrode shows a specific capacitance of 220 F/g at 1.0 A/g, and 185 F/g under a high current density of 20.0 A/g in a 6 mol/L KOH electrolyte.
  • 加载中
    1. [1]

      [1] (a) G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828;

    2. [2]

      (b) L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage, Small 8 (2012) 1130-1166.

    3. [3]

      [2] (a) Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whisker-like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance, Adv. Mater. 18 (2006) 2619-2623;

    4. [4]

      (b) X. Dong, L. Wang, D. Wang, C. Li, J. Jin, Layer-by-layer engineered Co-Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor, Langmuir 28 (2012) 293-298;

    5. [5]

      (c) C. Xu, J. Sun, L. Gao, Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance, J. Mater. Chem. 21 (2011) 11253-11258.

    6. [6]

      [3] (a) M. Liu, L. Gan, C. Tian, et al., Dual template approach for the synthesis of hierarchically mesocellular carbon foams, Chin. Chem. Lett. 20 (2009) 123-126;

    7. [7]

      (b) W. Zhang, Y.H. Qu, L.J. Gao, Performance of PbO2/activated carbon hybrid supercapacitor with carbon foam substrate, Chin. Chem. Lett. 23 (2012) 623-626;

    8. [8]

      (c) L.R. Wang, F. Ran, Y.T. Tan, et al., Coral reef-like polyanaline nanotubes prepared by a reactive template of manganese oxide for supercapacitor electrode, Chin. Chem. Lett. 22 (2011) 964-968.

    9. [9]

      [4] (a) Y. Lv, M. Liu, L. Gan, et al., Synthesis of sodium-vanadate-doped ordered mesoporous carbon foams as capacitor electrode materials, Chem. Lett. 40 (2011) 236-238;

    10. [10]

      (b) Y. Lv, L. Gan, M. Liu, et al., A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes, J. Power Sources 209 (2012) 152-157;

    11. [11]

      (c) W. Xiong, M. Liu, L. Gan, et al., A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes, J. Power Sources 196 (2011) 10461- 10464;

    12. [12]

      (d) G. Hasegawa, M. Aoki, K. Kanamori, et al., Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-containing activated carbon with high surface area, J. Mater. Chem. 21 (2011) 2060-2063;

    13. [13]

      (e) W. Xing, C.C. Huang, S.P. Zhuo, et al., Hierarchical porous carbons with high performance for supercapacitor electrodes, Carbon 47 (2011) 1715-1722.

    14. [14]

      [5] (a) Q. Li, R. Jiang, Y. Dou, et al., Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor, Carbon 49 (2011) 1248-1257;

    15. [15]

      (b) H. Kim, M.E. Fortunato, H. Xu, J.H. Bang, K.S. Suslick, Carbon microspheres as supercapacitors, J. Phys. Chem. C 115 (2011) 20481-20486;

    16. [16]

      (c) J. Qian, M. Liu, L. Gan, et al., A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage, Chem. Commun. 49 (2013) 3043-3045.

    17. [17]

      [6] D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. Int. Ed. 47 (2008) 373-376.

    18. [18]

      [7] K. Kobayashi, S. Sugawara, S. Toyoda, H. Honda, An X-ray diffraction study of phenol-formaldehyde resin carbons, Carbon 6 (1968) 359-363.

    19. [19]

      [8] (a) A.H. Lu, W.C. Li, E.L. Salabas, B. Spliethoff, F. Schuth, Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon, Chem. Mater. 18 (2006) 2086-2094;

    20. [20]

      (b) S.J. Yi, Z. Fan, C. Wu, J.H. Chen, Catalytic graphitization of furan resin carbon by yttrium, Carbon 46 (2008) 378-380;

    21. [21]

      (c) R.W. Fu, T.F. Baumann, S. Cronin, et al., Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels, Langmuir 21 (2005) 2647-2651;

    22. [22]

      (d) Z. Xu, B. Xia, W. Wang, et al., Graphitization of aerogel-like carbons in molten sodium metal, Carbon 49 (2011) 3385-3387.

    23. [23]

      [9] W. Gao, Y. Wan, Y. Dou, D. Zhao, Synthesis of partially graphitic ordered mesoporous carbons with high surface areas, Adv. Eng. Mater. 1 (2011) 115-123.

    24. [24]

      [10] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (2000) 14095-14107.

    25. [25]

      [11] Z. Wang, Z. Lu, X. Huang, R. Xue, L. Chen, Chemical and crystalline structure characterizations of polyfurfuryl alcohol pyrolyzed at 600℃, Carbon 36 (1998) 51-59.

    26. [26]

      [12] (a) M. Liu, L. Gan, Z. Xu, et al., Unusual phase inversion behavior in an emulsion polymerization system caused by ammonia, Chem. Lett. 39 (2010) 274-275;

    27. [27]

      (b) M. Liu, L. Gan, F. Zhao, et al., Carbon foams prepared by an oil-in-water emulsion method, Carbon 45 (2007) 2710-2712.

    28. [28]

      [13] C. Portet, P.L. Taberna, P. Simon, E. Flahaut, C. Laberty-Robert, High power density electrodes for carbon supercapacitor applications, Electrochim. Acta 50 (2005) 4174-4181.

    29. [29]

      [14] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854.

    30. [30]

      [15] Q. Wang, J. Yan, Y. Wang, et al., Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitor, Carbon 52 (2013) 209-218.

  • 加载中
    1. [1]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    2. [2]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    3. [3]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    4. [4]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    5. [5]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    6. [6]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    7. [7]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    8. [8]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    11. [11]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    12. [12]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    13. [13]

      Meihui LiuXinyuan ZhouXiao LiZhenjie XueTie Wang . Pushing the frontiers: Chip-based detection based on micro- and nano-structures. Chinese Chemical Letters, 2024, 35(4): 108875-. doi: 10.1016/j.cclet.2023.108875

    14. [14]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    15. [15]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    16. [16]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    17. [17]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    18. [18]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    19. [19]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    20. [20]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

Metrics
  • PDF Downloads(0)
  • Abstract views(788)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return