Citation: Jin-Hui Yang, Bing-Bing Chen, Yi-Min Xie, Yao Feng, Xiao-Qin Ma. First total synthesis of (±)-malaysianone A and (±)-tanariflavanones B[J]. Chinese Chemical Letters, ;2013, 24(11): 1027-1029. shu

First total synthesis of (±)-malaysianone A and (±)-tanariflavanones B

  • Corresponding author: Jin-Hui Yang, 
  • Received Date: 16 May 2013
    Available Online: 21 June 2013

  • A concise approach for the first total synthesis of two naturally occurring flavanoids, (±)-malaysianone A (1) and (±)-tanariflavanones B (2), has been accomplished with total yields of 12.9% and 10.4%, respectively. The key steps were regioselective deprotection and regioselective synthesis of 5-formaldehyde-8-hydroxy-2-[40-methyl-30-penteneyl]-dihydro-1-benzopyran (8).
  • 加载中
    1. [1]

      [1] T.R. Seshadri, Recent developments in the chemistry of flavonoids, Tetrahedron 6 (1959) 169-200.

    2. [2]

      [2] T.L. Meragelman, K.D. Tucker, T.G. McClord, et al., Antifungal flavonoids from Hildegardia barteri, J. Nat. Prod. 68 (2005) 1790-1792.

    3. [3]

      [3] M.J. Salvatore, A.B. Kng, A.C. Graham, et al., Antibacterial activity of lonchocarpol A, J. Nat. Prod. 61 (1998) 640-642.

    4. [4]

      [4] M.M. Rahman, A.I. Gray, Antibacterial and antifungal activities of the constituents of Flemingia paniculata, P. Hkondkar, Pharm. Biol. 46 (2008) 356-359.

    5. [5]

      [5] K.V. Hirpara, P. Aggarwal, A.J. Mukherjee, et al., Quercetin and its derivatives: synthesis, pharmacological useswith special emphasis on antitumor properties and prodrug with enhanced bioavailability, Curr. Med. Chem. 9 (2009) 138-161.

    6. [6]

      [6] G. Webster, Synthesis of the genera and suprageneric taxa of Euphorbiaceae, Ann. Missouri Bot. Gard. 81 (1994) 33-144.

    7. [7]

      [7] I. Zakaria, N. Ahmat, F.M. Jaafar, et al., Flavonoids with antiplasmodial and cytotoxic activities of Macaranga triloba, Fitoterapia 83 (2012) 968-972.

    8. [8]

      [8] E.J.H. Corner, Wayside Trees of Malaya, 2th ed., United Selangor Press, Kuala Lumpur, 1998.

    9. [9]

      [9] M.H. Tseng, C.H. Chou, Y.M. Chen, et al., Allelopathic prenylflavanones from the fallen leaves of Macaranga tanarius, J. Nat. Prod. 64 (2001) 827-828.

    10. [10]

      [10] J.H. Yang, J.S. Luo, D.D. Guo, et al., Total synthesis of (±)-5,30-dihydroxy-40-methoxy-600-dimethyl-chromeno-(7,8,200,300)-flavanone, Chin. J. Org. Chem. 32 (2012) 1749-1752.

    11. [11]

      [11] J.H. Yang, W.B. Zuo, D.D. Guo, et al., First total synthesis of four natural prenylated flavonoids, Chin. Chem. Lett. 23 (2012) 1375-1377.

    12. [12]

      [12] J.H. Yang, W.Q. Huang, J.S. Luo, et al., First total synthesis of (±)-sepicanin A, Chin. Chem. Lett. 23 (2012) 127-129.

    13. [13]

      [13] W.B. Zuo, J.H. Yang, H.J. Li, et al., Study on total synthesis of four natural prenylated flavonoids, Chin. J. Org. Chem. 32 (2012) 2276-2282.

    14. [14]

      [14] J.H. Yang, Y.H. Zhang, H.J. Li, et al., First total synthesis of (±)-puyanin and (±)-40-O-methylbonannione, Chin. Chem. Lett. 21 (2010) 1267-1269.

    15. [15]

      [15] T. Jaipetch, S. Kanghae, O. Pancharoen, et al., Constituents of Boesenbergia pandurata (syn Kaempferia pandurata): isolation, crystal structure and synthesis of (±)-boesenbergin A, Aust. J. Chem. 25 (1982) 351-361.

    16. [16]

      [16] Spectral data of (±)-malaysianone A: White solid, mp 89-91 ℃; 1H NMR (400 MHz, CDCl3): δ 12.06 (s, 1H, OH-5), 6.91 (dd, 1H, J = 1.6 Hz, J = 8.4 Hz, H-50), 6.85 (d, 1H, J = 8.0 Hz, H-60), 6.61 (d, 1H, J = 10 Hz, H-200), 6.18 (s, 1H, OH-40), 6.01 (d, 1H, J = 2.4 Hz, H-6), 5.98 (d, 1H, J = 2.4 Hz, H-8), 5.69 (d, 1H, J = 10.4 Hz, H-100), 5.60 (s, 1H, OH-7), 5.53 (dd, 1H, J = 2.8 Hz, J = 13.2 Hz, H-2), 5.08 (dt, 1H, J = 1.2 Hz, J = 5.6 Hz, H-700), 3.15 (dd, 1H, J = 13.2 Hz, J = 17.2 Hz, H-3ax), 2.75 (dd, 1H, J = 3.2 Hz, J = 17.2 Hz, H-3eq), 2.10-2.06 (m, 2H, H-600), 1.79-1.68 (m, 2H, H-500), 1.67, 1.57 (s, 6H, 2×CH3, H-900 and 1000), 1.43 (d, 3H, J = 6.0 Hz, CH3, H-400); 13C-NMR (100 MHz, CDCl3,): δ 196.4 (s, C-4), 164.9 (s, C-7), 164.2 (s, C-5), 163.3 (s, C-9), 145.0 (s, C-40), 139.6 (s, C-30), 132.1 (s, C-800), 131.0 (s, C-200), 124.6 (s, C-10), 123.6 (s, C-700), 118.9 (s, C-20), 118.8(d, C-60), 118.6 (s, C-100), 114.5 (s, C-50), 103.0 (s, C-10), 96.8 (s, C-8), 95.6 (s, C-6), 79.0 (s, C-300), 76.0 (d, C-2), 42.3 (s, C-3), 40.7 (s, C-500), 26.0 (d, C-400), 25.6 (s, C-1000), 22.7 (s, C-600), 17.6 (s, C-900). HREIMS (m/z): 423.18039 [M+H]+ (calcd. for C25H26O6: 423.18022). Spectral data of (±)-tanariflavanones B (C30H34O6): Brownish oil, 1HNMR (400 MHz, CDCl3,): d 12.4 (s, 1H, OH-5), 6.90 (d, 1H, J = 8.4 Hz, H-60), 6.84 (d, 1H, J = 8.4 Hz, H-50), 6.60 (d, 1H, J = 10 Hz, H-100), 6.33 (s, 1H, OH-40), 5.99 (s, 1H, H-8), 5.68 (d, 1H, J = 10 Hz, H-200), 5.60 (s, 1H, OH-7), 5.50 (dd, 1H, J = 13.6 Hz, J = 2.8 Hz, H-2), 5.24 (dt, 1H, H-2000), 5.08 (dt, 1H, H-700), 3.35 (d, 2H, J = 7.2 Hz, H-1000), 3.16 (dd, 1H, J = 13.2 Hz, J = 17.2 Hz, H-3ax), 2.75 (dd, 1H, J = 2.8 Hz, J = 17.2 Hz, H-3eq), 2.10-2.12 (m, 2H, CH2, H-600), 1.82-1.77 (m, 2H, H-500), 1.57, 1.67, 1.72, 1.75 (s, 12H, 4CH3), 1.42 (d, 3H, CH3); 13CNMR(100 MHz, CDCl3,): d 196.3 (s, C-4), 163.7 (s, C-7), 161.3 (s, C-9), 161.1 (s, C-5), 145.1 (s, C-40), 139.6 (s, C-30), 135.5 (s, C-3000), 132.1 (s, C-800), 130.9 (d, C-200), 124.8 (d, C-700), 123.6 (s, C-10), 121.5 (d, C-2000), 118.9 (d, C-100), 118.7 (d, C-60), 118.6 (s, C-20), 114.5 (d, C-50), 107.1 (s, C-6), 102.9 (s, C-10), 95.5 (d, C-8), 79.0 (s, C-300), 76.0 (d, C-2), 42.5 (d, C-3), 40.7 (s, C-500), 26.1 (d, C-400), 25.8 (s, C-4000), 25.6 (s, C-1000), 22.7 (s, C-600), 21.1 (s, C-1000), 17.8 (d, C-5000), 17.6 (s, C-900). HREIMS (m/z): 491.2440 [M+H]+.

  • 加载中
    1. [1]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    2. [2]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    3. [3]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    4. [4]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    5. [5]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    8. [8]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    9. [9]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    10. [10]

      Chuan LiYangyang HanYanan ZhaiKe LiXingzhong LiuZhuan ZhangCai JiaYongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019

    11. [11]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    12. [12]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    13. [13]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    14. [14]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    15. [15]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    16. [16]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    17. [17]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    18. [18]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    19. [19]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    20. [20]

      Xue-Jiao WangJun-Li XinHong XiangZe-Yu ZhaoYu-Hang HeHaibo WangGuangyao MeiYi-Cheng MaoJuan XiongJin-Feng Hu . Holotrichones A and B, potent anti-leukemic lindenane-type sesquiterpene trimers with unprecedented complex carbon skeletons from a rare Chloranthus species. Chinese Chemical Letters, 2024, 35(12): 109682-. doi: 10.1016/j.cclet.2024.109682

Metrics
  • PDF Downloads(0)
  • Abstract views(683)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return