Citation: Yang Sang, Peng-Fei Yang, Tian-Duo Li. Selective derivatization of oxime-blocked tolylene-2,4-diisocyanate[J]. Chinese Chemical Letters, ;2013, 24(11): 1019-1022. shu

Selective derivatization of oxime-blocked tolylene-2,4-diisocyanate

  • Corresponding author: Tian-Duo Li, 
  • Received Date: 13 May 2013
    Available Online: 28 May 2013

  • A selective reaction of cyclohexanone oxime-blocked tolylene-2,4-diisocyanate (2,4-TDI) with amino siloxane was observed, in which amines were capable of discriminating two reactive groups in the 2,4-TDI molecule. Thus, tolylene-2-tert-butyldimethylsilyloxyethyl carbamide-4-cyclohexanone oxime carbamate was synthesized and its precise structure was determined by single-crystal X-ray diffraction. Moreover, it was found that oxime-blocked isocyanate could react selectively with the-NH2 group with the-OH group unprotected in ethanolamine.
  • 加载中
    1. [1]

      [1] (a) I. Oref, Selective chemistry redux, Science 279 (1998) 820-821;

    2. [2]

      (b) J.C. Tully, Mode-selective control of surface reactions, Science 312 (2006) 1004-1005.

    3. [3]

      [2] D.K. Chattopadhyay, K.V.S.N. Raju, Structural engineering of polyurethane coatings for high performance applications, Prog. Polym. Sci. 32 (2007) 352-418.

    4. [4]

      [3] L.L. Ferstandig, R.A. Scherrer, Mechanism of isocyanate reactions with ethanol, J. Am. Chem. Soc. 81 (1959) 4838-4842.

    5. [5]

      [4] P.F. Yang, Y.D. Han, T.D. Li, J.Y. Li, 1H NMR analysis of the tolylene-2,4-diisocyanate-methanol reaction, Chin. Chem. Lett. 21 (2010) 853-855.

    6. [6]

      [5] (a) D.A. Wicks, Z.W. Wicks Jr., Blocked isocyanate Ⅲ. Part A. Mechanisms and chemistry, Prog. Org. Coat. 36 (1999) 148-172;

    7. [7]

      (b) D.A. Wicks, Z.W. Wicks Jr., Blocked isocyanate Ⅲ. Part B. Uses and applications of blocked isocyanates, Prog. Org. Coat. 41 (2001) 1-83.

    8. [8]

      [6] (a) C.J. Hawker, R. Lee, J.M.J. Fréchet, One-step synthesis of hyperbanched dendritic polyesters, J. Am. Chem. Soc. 113 (1991) 4583-4588;

    9. [9]

      (b) R. Spindler, J.M.J. Fréchet, Synthesis and characterization of hyperbranched polyurethanes prepared from blocked isocyanate monomers by step-growth polymerization, Macromolecules 26 (1993) 4809-4813;

    10. [10]

      (c) R. Spindler, J.M.J. Fréchet, Two-step approach towards the accelerated synthesis of dendritic macromolecules, J. Chem. Soc. Perkin Trans. 1 (8) (1993) 913-918.

    11. [11]

      [7] (a) H. Kothandaraman, R. Thangavel, Studies on toluenediisocyanate blocked by benzophenone oximes, J. Polym. Sci. Part A: Polym. Chem. 31 (1993) 2653-2657;

    12. [12]

      (b) H. Kothandaraman, R. Thangavel, Cyclohexanone oxime-blocked polyisocyanates, J. Appl. Polym. Sci. 10 (1993) 1791-1796;

    13. [13]

      (c) H. Kothandaraman, R. Thangavel, Thermal analysis of oxime-blocked toluene diisocyanates, Macromol. Mater. Eng. 207 (1993) 93-99.

    14. [14]

      [8] (a) K. Schwetlick, R. Noack, F. Stebner, Three fundamental mechanisms of basecatalysed reactions of isocyanate with hydrogen-acidic compounds, J. Chem. Soc. Perkin Trans. 2 (3) (1994) 599-608;

    15. [15]

      (b) K. Schwetlick, R. Noack, Kinetics and catalysis of consecutive isocyanate reactions, formation of carbamates, allophanates and isocyanurates, J. Chem. Soc. Perkin Trans. 2 (2) (1995) 395-402.

    16. [16]

      [9] (a) R. Gras, E. Wolf, Blockierte isocyanatgruppen und isocyanauratgruppen enthal tende gemische sowie deren herstellung, DE 946085 A1 (1981);

    17. [17]

      (b) R. Gras, J. Obendorf, E. Wolf, Formkoerper-und ueberzugsmassen, DE 3004902 A1 (1981);

    18. [18]

      (c) R. Gras, A. Schott, E. Wolf, Formkoerper-und ueberzugsmassen, DE 3004903 A1 (1981);

    19. [19]

      (d) R. Gras, E. Wolf, Cold-setting solventless thermosetting polyurethane-polyurea molding material, DE 4028288 A (1992);

    20. [20]

      (e) R. Gras, E. Wolf, Blocked (cyclo) aliphatic polyisocyanates and process for their preparation, EP 475003 A1 (1992);

    21. [21]

      (f) R. Gras, E. Wolf, Blocked aliphatic diisocyanates or diisocyanate-adducts, EP 787754 A2 (1997).

    22. [22]

      [10] (a) C. Zhao, P.F. Yang, S.P. Wang, J.Y. Li, T.D. Li, Synthesis and characterization of asymmetric substituted dicarbamates, Chin. Chem. Lett. 22 (2011) 1167-1170;

    23. [23]

      (b) P.F. Yang, C. Zhao, T.D. Li, Ring-opening and carbamste reaction of uretedione, Polym. Mater. Sci. Eng. 27 (2011) 129-132.

    24. [24]

      [11] M. Modesti, A. Lorenzetti, An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate-polyurethane foams, Eur. Polym. J. 37 (2001) 949-954.

    25. [25]

      [12] (a) C. Palomo, J.M. Balentova, J. Jimenez, Synthesis of b-lactam scaffolds for ditopic peptidomimetics, Org. Lett. 9 (2007) 101-104;

    26. [26]

      (b) S.B. Larsen, B.B. Andersen, T.N. Johansen, Palladiwm-catalyzed monoamination of dihalogenated benzenes, Tetrahedron 64 (2008) 2938-2950;

    27. [27]

      (c) J.J. Xue, X.M. Yu, Selective 3-and 6-OH modification of (±)-clausenamide, Chin. Chem. Lett. 22 (2011) 761-764.

    28. [28]

      [13] (a) A. Kumar, S. Ramakrishnan, Hyperbranched polyurethanes with varying spacer segments between the branching pionts, J. Polym. Sci. Part A: Polym. Chem. 34 (1996) 839-848;

    29. [29]

      (b) A. Kumar, E.W. Meijer, Novel hyperbranched polymer based on urea linkages, Chem. Commun. 1 (1998) 1629-1630;

    30. [30]

      (c) A.V. Ambade, A. Kumar, An efficient route for the synthesis of hyperbranched polymers and dendritic building blocks based on urea linkages, J. Polym. Sci. Part A: Polym. Chem. 39 (2001) 1295-1304.

    31. [31]

      [14] (a) S.P. Rannard, N.J. Davis, The selective reaction of primary amines with carbonyl imidazole containing compounds: selective amide and carbamate synthesis, Org. Lett. 2 (2000) 2117-2120;

    32. [32]

      (b) W.J. Feast, S.P. Rannard, A. Stoddart, Selective convergent synthesis of aliphatic polyurethane dendrimers, Macromolecules 36 (2003) 9704-9706;

    33. [33]

      (c) S.P. Rannard, N.J. Davis, I. Herbert, Synthesis of water soluble hyperbranched polyurethanes using selective activation of AB2 monomers, Macromolecules 37 (2004) 9418-9430.

    34. [34]

      [15] (a) A.P. Goodwin, S.S. Lam, J.M.J. Fréchet, Rapid efficient synthesis of heterobifunctional biodegradable dendrimers, J. Am. Chem. Soc. 129 (2007) 6994-6995;

    35. [35]

      (b) K. Maruyama, H. Kudo, T. Ikehara, et al., Synthesis and properties of photocross-linkable hyperbranched poly(urethane)s containing both terminal methacryloyl groups and carboxyl groups, Macromolecules 40 (2007) 4895-4900.

  • 加载中
    1. [1]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    2. [2]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    3. [3]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    4. [4]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    5. [5]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    6. [6]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    7. [7]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    8. [8]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    9. [9]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    10. [10]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    11. [11]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    12. [12]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    13. [13]

      Yanhua PengXin YuTing Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198

    14. [14]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    15. [15]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    16. [16]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    17. [17]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    18. [18]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    19. [19]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    20. [20]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

Metrics
  • PDF Downloads(0)
  • Abstract views(810)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return