Citation: Liang Ming, Ling Yan Gu, Qing Zhang, Min Zhao Xue, Yan Gang Liu. Preparation and study of photoswitchable fluorescence nanoparticles based on spirobenzopyran[J]. Chinese Chemical Letters, ;2013, 24(11): 1014-1018.
-
The preparation and performance characterization of <50 nm spirobenzopyran-based photochromic nanocomposites with photoswitchable fluorescence are presented. The nanocomposites were fabricated by means of a modified miniemulsion polymerization process, in which the hydrophobic spirobenzopyran was covalently attached to the polymer chains and the matched fluorescent dyes were noncovalently embedded in the nanoscale cross-linked polymeric matrix, respectively. The obtained nanocomposites with a high relative fluorescence quantum yield (Q) exhibited superior fluorescent photoswitchable performance due to the effective photo-induced intermolecular energy transfer. The stability of photomerocyanine was also improved.
-
-
[1]
[1] M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, Organic chemistry: a digital fluorescent molecular photoswitch, Nature 420 (2002) 759-760.
-
[2]
[2] F.M. Raymo, M. Tomasulo, Fluorescence modulation with photochromic switches, J. Phys. Chem. A 109 (2005) 7343-7352.
-
[3]
[3] T.B. Norsten, N.R. Branda, Axially-coordinated porphyrinic photochromes for nondestructive information processing, Adv. Mater. 13 (2001) 347-349.
-
[4]
[4] G.M. Tsivgoulis, J.M. Lehn, Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory, Angew. Chem. Int. Ed. 34 (1995) 1119-1122.
-
[5]
[5] L. Giordano, T.M. Jovin, M. Irie, E.A. Jares-Erijman, Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET), J. Am. Chem. Soc. 124 (2002) 7481-7489.
-
[6]
[6] W.J. Tan, J. Zhou, F.Y. Li, T. Yi, H. Tian, Visible light-triggered photoswitchable diarylethene-based iridium(Ⅲ) complexes for imaging living cells, Chem. Asian J. 6 (2011) 1263-1268.
-
[7]
[7] Z.Y. Cong, L.F. Yang, L. Jiang, D. Ye, S.L. Dong, Comparison of two thioxopeptide bond photoswitches in insect kinin, Chin. Chem. Lett. 21 (2010) 476-479.
-
[8]
[8] Y. Zou, T. Yi, S.Z. Xiao, et al., Amphiphilic diarylethene as a photoswitchable probe for imaging living cells, J. Am. Chem. Soc. 130 (2008) 15750-15751.
-
[9]
[9] X.J. Piao, Y. Zou, J.C. Wu, C.Y. Li, T. Yi, Multiresponsive switchable diarylethene and its application in bioimaging, Org. Lett. 11 (2009) 3818-3821.
-
[10]
[10] H. Durr, H. Bouas-Laurent, Photochromism Molecules and System, Elsevier, Amsterdam, 1990.
-
[11]
[11] G. Berkovic, V. Krongauz, V. Weiss, Spiropyrans and spirooxazines for memories and switches, Chem. Rev. 100 (2000) 1741-1754.
-
[12]
[12] N. Kawatsuki, T. Yamamoto, H. Ono, Photoinduced alignment control of photoreactive side-chain polymer liquid crystal by linearly polarized ultraviolet light, Appl. Phys. Lett. 74 (1999) 935-937.
-
[13]
[13] L. Zhu, M.Q. Zhu, J.K. Hurst, A.D.Q. Li, Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence, J. Am. Chem. Soc. 127 (2005) 8968-8970.
-
[14]
[14] M.Q. Zhu, L.Y. Zhu, J.J. Han, et al., Photochromic polymer nanoparticles with optically switchable luminescence, J. Am. Chem. Soc. 128 (2006) 4303-4309.
-
[15]
[15] Z.K. Hu, Q. Zhang, M.Z. Xue, Q.R. Sheng, Y.G. Liu, Spirobenzopyran-based photochromic nanohybrids with photoswitchable fluorescence, Opt. Mater. 30 (2008) 851-856.
-
[16]
[16] K. Landfester, The generation of nanoparticles in miniemulsions, Adv. Mater. 13 (2001) 765-768.
-
[17]
[17] Q.H. Zhang, Z.H. Luo, X.L. Zhan, F.Q. Chen, Monomer reactivity ratios for fluoroacrylate and butyl methacrylate in miniemulsion copolymerizations initiated by potassium persulphate, Chin. Chem. Lett. 20 (2009) 478-482.
-
[18]
[18] F.J. Schork, Y.W. Luo, W. Smulders, et al., Miniemulsion polymerization, Adv. Polym. Sci. 175 (2005) 129-255.
-
[19]
[19] M.J. Han, E.H. Lee, E.K. Kim, Preparation and optical properties of polystyrene nanocapsules containing photochromophores, Opt. Mater. 21 (2003) 579-583.
-
[20]
[20] Z.X. Wang, Q.H. Zhang, Y.T. Yu, et al., Synthesis of polystyrene-styrene/butadiene diblock copolymers via reversible addition-fragmentation chain transfer miniemulsion polymerization, Chin. Chem. Lett. 21 (2010) 1497-1500.
-
[21]
[21] T. FoÉster, 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation, Discuss Faraday Soc. 27 (1959) 7-17.
-
[22]
[22] T. Virgili, D.G. Lidzey, D.D.C. Bradley, Efficient energy transfer from blue to red in tetraphenylporphyrin-doped poly(9,9-dioctylfluorene) light-emitting diodes, Adv. Mater. 12 (2000) 58-62.
-
[23]
[23] J.R. Taylor, M.M. Fang, S. Nie, Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles, Anal. Chem. 72 (2000) 1979-1986.
-
[24]
[24] C. Sanchez, B. Lebeau, F. Chaput, J.P. Boilot, Optical properties of functional hybrid organic-inorganic nanocomposites, Adv. Mater. 15 (2003) 1969-1994.
-
[25]
[25] F.M. Raymo, S. Giordani, Electron transport in self-assembled bipyridinium multilayers, J. Org. Chem. 68 (2003) 4158-4169.
-
[26]
[26] J.N. Demas, G.A. Crosby, The measurement of photoluminescence quantum yields, J. Phys. Chem. 75 (1971) 991-1024.
-
[27]
[27] I.B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, New York, 1971.
-
[28]
[28] P. Meallier, S. Guittonneau, C. Emmelin, T. Konstantinova, Photochemistry of fluorescein and eosin derivatives, Dyes Pigments 40 (1998) 95-98.
-
[29]
[29] C.S. Chern, T.J. Chen, Miniemulsion polymerization of styrene using alkyl methacrylates as the reactive cosurfactant, Colloid Polym. Sci. 275 (1997) 546-554.
-
[30]
[30] Y.K. Gong, F. Nakanishi, K. Abe, Stability of a photoreactive polymer LB film, Mol. Cryst. Liquid Cryst. 327 (1999) 123-126.
-
[31]
[31] K.H. Shen, X.L. Li, D.H. Choi, Synthesis and photochromic behavior of spiropyran dyes, Chem. J. Chin. Univ. Chin. 26 (2005) 935-938.
-
[32]
[32] D.L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21 (1953) 836-850.
-
[1]
-
-
[1]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[2]
Bohan Chen , Liming Gong , Jing Feng , Mingji Jin , Liqing Chen , Zhonggao Gao , Wei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432
-
[3]
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
-
[4]
Yiran Tao , Chunlei Dai , Zhaoxiang Xie , Xinru You , Kaiwen Li , Jun Wu , Hai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170
-
[5]
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
-
[6]
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
-
[7]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[8]
Yujie Li , Ya-Nan Wang , Yin-Gen Luo , Hongcai Yang , Jinrui Ren , Xiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576
-
[9]
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
-
[10]
Shenglan Zhou , Haijian Li , Hongyi Gao , Ang Li , Tian Li , Shanshan Cheng , Jingjing Wang , Jitti Kasemchainan , Jianhua Yi , Fengqi Zhao , Wengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142
-
[11]
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
-
[12]
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
-
[13]
Feng Cui , Fangman Chen , Xiaochun Xie , Chenyang Guo , Kai Xiao , Ziping Wu , Yinglu Chen , Junna Lu , Feixia Ruan , Chuanxu Cheng , Chao Yang , Dan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681
-
[14]
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
-
[15]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[16]
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
-
[17]
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
-
[18]
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
-
[19]
Xiangqian Cao , Chenkai Yang , Xiaodong Zhu , Mengxin Zhao , Yilin Yan , Zhengnan Huang , Jinming Cai , Jingming Zhuang , Shengzhou Li , Wei Li , Bing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199
-
[20]
Yifei Zhang , Yuncong Xue , Laiwei Gao , Rui Liao , Feng Wang , Fei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(647)
- HTML views(4)