Citation: Liang Ming, Ling Yan Gu, Qing Zhang, Min Zhao Xue, Yan Gang Liu. Preparation and study of photoswitchable fluorescence nanoparticles based on spirobenzopyran[J]. Chinese Chemical Letters, ;2013, 24(11): 1014-1018. shu

Preparation and study of photoswitchable fluorescence nanoparticles based on spirobenzopyran

  • Corresponding author: Qing Zhang, 
  • Received Date: 26 March 2013
    Available Online: 26 June 2013

  • The preparation and performance characterization of <50 nm spirobenzopyran-based photochromic nanocomposites with photoswitchable fluorescence are presented. The nanocomposites were fabricated by means of a modified miniemulsion polymerization process, in which the hydrophobic spirobenzopyran was covalently attached to the polymer chains and the matched fluorescent dyes were noncovalently embedded in the nanoscale cross-linked polymeric matrix, respectively. The obtained nanocomposites with a high relative fluorescence quantum yield (Q) exhibited superior fluorescent photoswitchable performance due to the effective photo-induced intermolecular energy transfer. The stability of photomerocyanine was also improved.
  • 加载中
    1. [1]

      [1] M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, Organic chemistry: a digital fluorescent molecular photoswitch, Nature 420 (2002) 759-760.

    2. [2]

      [2] F.M. Raymo, M. Tomasulo, Fluorescence modulation with photochromic switches, J. Phys. Chem. A 109 (2005) 7343-7352.

    3. [3]

      [3] T.B. Norsten, N.R. Branda, Axially-coordinated porphyrinic photochromes for nondestructive information processing, Adv. Mater. 13 (2001) 347-349.

    4. [4]

      [4] G.M. Tsivgoulis, J.M. Lehn, Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory, Angew. Chem. Int. Ed. 34 (1995) 1119-1122.

    5. [5]

      [5] L. Giordano, T.M. Jovin, M. Irie, E.A. Jares-Erijman, Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET), J. Am. Chem. Soc. 124 (2002) 7481-7489.

    6. [6]

      [6] W.J. Tan, J. Zhou, F.Y. Li, T. Yi, H. Tian, Visible light-triggered photoswitchable diarylethene-based iridium(Ⅲ) complexes for imaging living cells, Chem. Asian J. 6 (2011) 1263-1268.

    7. [7]

      [7] Z.Y. Cong, L.F. Yang, L. Jiang, D. Ye, S.L. Dong, Comparison of two thioxopeptide bond photoswitches in insect kinin, Chin. Chem. Lett. 21 (2010) 476-479.

    8. [8]

      [8] Y. Zou, T. Yi, S.Z. Xiao, et al., Amphiphilic diarylethene as a photoswitchable probe for imaging living cells, J. Am. Chem. Soc. 130 (2008) 15750-15751.

    9. [9]

      [9] X.J. Piao, Y. Zou, J.C. Wu, C.Y. Li, T. Yi, Multiresponsive switchable diarylethene and its application in bioimaging, Org. Lett. 11 (2009) 3818-3821.

    10. [10]

      [10] H. Durr, H. Bouas-Laurent, Photochromism Molecules and System, Elsevier, Amsterdam, 1990.

    11. [11]

      [11] G. Berkovic, V. Krongauz, V. Weiss, Spiropyrans and spirooxazines for memories and switches, Chem. Rev. 100 (2000) 1741-1754.

    12. [12]

      [12] N. Kawatsuki, T. Yamamoto, H. Ono, Photoinduced alignment control of photoreactive side-chain polymer liquid crystal by linearly polarized ultraviolet light, Appl. Phys. Lett. 74 (1999) 935-937.

    13. [13]

      [13] L. Zhu, M.Q. Zhu, J.K. Hurst, A.D.Q. Li, Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence, J. Am. Chem. Soc. 127 (2005) 8968-8970.

    14. [14]

      [14] M.Q. Zhu, L.Y. Zhu, J.J. Han, et al., Photochromic polymer nanoparticles with optically switchable luminescence, J. Am. Chem. Soc. 128 (2006) 4303-4309.

    15. [15]

      [15] Z.K. Hu, Q. Zhang, M.Z. Xue, Q.R. Sheng, Y.G. Liu, Spirobenzopyran-based photochromic nanohybrids with photoswitchable fluorescence, Opt. Mater. 30 (2008) 851-856.

    16. [16]

      [16] K. Landfester, The generation of nanoparticles in miniemulsions, Adv. Mater. 13 (2001) 765-768.

    17. [17]

      [17] Q.H. Zhang, Z.H. Luo, X.L. Zhan, F.Q. Chen, Monomer reactivity ratios for fluoroacrylate and butyl methacrylate in miniemulsion copolymerizations initiated by potassium persulphate, Chin. Chem. Lett. 20 (2009) 478-482.

    18. [18]

      [18] F.J. Schork, Y.W. Luo, W. Smulders, et al., Miniemulsion polymerization, Adv. Polym. Sci. 175 (2005) 129-255.

    19. [19]

      [19] M.J. Han, E.H. Lee, E.K. Kim, Preparation and optical properties of polystyrene nanocapsules containing photochromophores, Opt. Mater. 21 (2003) 579-583.

    20. [20]

      [20] Z.X. Wang, Q.H. Zhang, Y.T. Yu, et al., Synthesis of polystyrene-styrene/butadiene diblock copolymers via reversible addition-fragmentation chain transfer miniemulsion polymerization, Chin. Chem. Lett. 21 (2010) 1497-1500.

    21. [21]

      [21] T. FoÉster, 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation, Discuss Faraday Soc. 27 (1959) 7-17.

    22. [22]

      [22] T. Virgili, D.G. Lidzey, D.D.C. Bradley, Efficient energy transfer from blue to red in tetraphenylporphyrin-doped poly(9,9-dioctylfluorene) light-emitting diodes, Adv. Mater. 12 (2000) 58-62.

    23. [23]

      [23] J.R. Taylor, M.M. Fang, S. Nie, Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles, Anal. Chem. 72 (2000) 1979-1986.

    24. [24]

      [24] C. Sanchez, B. Lebeau, F. Chaput, J.P. Boilot, Optical properties of functional hybrid organic-inorganic nanocomposites, Adv. Mater. 15 (2003) 1969-1994.

    25. [25]

      [25] F.M. Raymo, S. Giordani, Electron transport in self-assembled bipyridinium multilayers, J. Org. Chem. 68 (2003) 4158-4169.

    26. [26]

      [26] J.N. Demas, G.A. Crosby, The measurement of photoluminescence quantum yields, J. Phys. Chem. 75 (1971) 991-1024.

    27. [27]

      [27] I.B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, New York, 1971.

    28. [28]

      [28] P. Meallier, S. Guittonneau, C. Emmelin, T. Konstantinova, Photochemistry of fluorescein and eosin derivatives, Dyes Pigments 40 (1998) 95-98.

    29. [29]

      [29] C.S. Chern, T.J. Chen, Miniemulsion polymerization of styrene using alkyl methacrylates as the reactive cosurfactant, Colloid Polym. Sci. 275 (1997) 546-554.

    30. [30]

      [30] Y.K. Gong, F. Nakanishi, K. Abe, Stability of a photoreactive polymer LB film, Mol. Cryst. Liquid Cryst. 327 (1999) 123-126.

    31. [31]

      [31] K.H. Shen, X.L. Li, D.H. Choi, Synthesis and photochromic behavior of spiropyran dyes, Chem. J. Chin. Univ. Chin. 26 (2005) 935-938.

    32. [32]

      [32] D.L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21 (1953) 836-850.

  • 加载中
    1. [1]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    2. [2]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    3. [3]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    4. [4]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    5. [5]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    6. [6]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    9. [9]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    10. [10]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    11. [11]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    12. [12]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    13. [13]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    14. [14]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    15. [15]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    16. [16]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    17. [17]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    18. [18]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    19. [19]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    20. [20]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

Metrics
  • PDF Downloads(0)
  • Abstract views(647)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return