Citation: Shi-Ming Peng, Yu Zhou, Niu Huang. Improving the accuracy of pose prediction in molecular docking via structural filtering and conformational clustering[J]. Chinese Chemical Letters, ;2013, 24(11): 1001-1004.
-
Structure-based virtual screening (molecular docking) is now one of the most pragmatic techniques to leverage target structure for ligand discovery. Accurate binding pose prediction is critical to molecular docking. Here, we describe a general strategy to improve the accuracy of docking pose prediction by implementing the structural descriptor-based filtering and KGS-penalty function-based conformational clustering in an unbiased manner. We assessed our method against 150 high-quality protein-ligand complex structures. Surprisingly, such simple components are sufficient to improve the accuracy of docking pose prediction. The success rate of predicting near-native docking pose increased from 53% of the targets to 78%. We expect that our strategymay have general usage in improving currently available molecular docking programs.
-
-
[1]
[1] X. Barril, R.E. Hubbard, S.D. Morley, Virtual screening in structure-based drug discovery, Mini Rev. Med. Chem. 4 (2004) 779-791.
-
[2]
[2] H. Xu, Z. Jin, S. Liu, et al., Design, synthesis characterization and in vitro biological activity of a series of 3-aryl-6-(bromoarylmethyl)-7H-thiazolo[3,2-b]-1, 2, 4-triazin-7-one derivatives as the novel acetylcholinesterase inhibitors, Chin. Chem. Lett. 23 (2012) 765-768.
-
[3]
[3] F. Zeng, S. Peng, L. Li, et al., HAT off: structure-based identification of druglike inhibitors of p300 histone acetyltransferase, Acta Pharm. Sin. 48 (2013) 700-708.
-
[4]
[4] X.H. Ma, F. Zhu, X. Liu, et al., Virtual screening methods as tools for drug lead discovery from large chemical libraries, Curr. Med. Chem. 19 (2012) 5562-5571.
-
[5]
[5] B.K. Shoichet, Virtual screening of chemical libraries, Nature 432 (2004) 862-865.
-
[6]
[6] N. Huang, C. Kalyanaraman, K. Bernacki, M.P. Jacobson, Molecular mechanics methods for predicting protein-ligand binding, Phys. Chem. Chem. Phys. 8 (2006) 5166-5177.
-
[7]
[7] R. Cao, M. Liu, M. Yin, et al., Discovery of novel tubulin inhibitors via structurebased hierarchical virtual screening, J. Chem. Inf. Model. 52 (2012) 2730-2740.
-
[8]
[8] N. Huang, C. Kalyanaraman, J.J. Irwin, M.P. Jacobson, Physics-based scoring of protein-ligand complexes: enrichment of known inhibitors in large-scale virtual screening, J. Chem. Inf. Model. 46 (2006) 243-253.
-
[9]
[9] M.G. Lerner, K.L. Meagher, H.A. Carlson, Automated clustering of probe molecules from solvent mapping of protein surfaces: new algorithms applied to hot-spot mapping and structure-based drug design, J. Comput. Aided Mol. Des. 22 (2008) 727-736.
-
[10]
[10] D.M. Lorber, B.K. Shoichet, Hierarchical docking of databases of multiple ligand conformations, Curr. Top. Med. Chem. 5 (2005) 739-749.
-
[11]
[11] L.A. Kelley, S.P. Gardner, M.J. Sutcliffe, An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies, Protein Eng. 9 (1996) 1063-1065.
-
[12]
[12] J.H. Hsieh, S. Yin, S. Liu, et al., Combined application of cheminformatics-and physical force field-based scoring functions improves binding affinity prediction for CSAR data sets, J. Chem. Inf. Model. 51 (2011) 2027-2035.
-
[13]
[13] J.H. Hsieh, S. Yin, X.S. Wang, et al., Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force fieldbased hit scoring functions improves the accuracy of structure-based virtual screening, J. Chem. Inf. Model. 52 (2012) 16-28.
-
[14]
[14] M.D. Eldridge, C.W. Murray, T.R. Auton, G.V. Paolini, R.P. Mee, Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes, J. Comput. Aided Mol. Des. 11 (1997) 425-445.
-
[15]
[15] C.A. Sotriffer, P. Sanschagrin, H. Matter, G. Klebe, SFCscore: scoring functions for affinity prediction of protein-ligand complexes, Proteins 73 (2008) 395-419.
-
[16]
[16] J.B. Dunbar Jr., R.D. Smith, C.Y. Yang, et al., CSAR benchmark exercise of 2010: selection of the protein-ligand complexes, J. Chem. Inf. Model. 51 (2011) 2036-2046.
-
[17]
[17] N. Huang, B.K. Shoichet, J.J. Irwin, Benchmarking sets for molecular docking, J. Med. Chem. 49 (2006) 6789-6801.
-
[18]
[18] J.J. Irwin, B.K. Shoichet, ZINC-a free database of commercially available compounds for virtual screening, J. Chem. Inf. Model. 45 (2005) 177-182.
-
[19]
[19] C.S. Rapp, C. Schonbrun, M.P. Jacobson, C. Kalyanaraman, N. Huang, Automated site preparation in physics-based rescoring of receptor ligand complexes, Proteins 77 (2009) 52-61.
-
[20]
[20] E.F. Pettersen, T.D.Goddard, C.C.Huang, et al.,UCSF Chimera-a visualizationsystem for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605-1612.
-
[1]
-
-
[1]
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
-
[2]
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
-
[3]
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
-
[4]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[5]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[6]
Yin-Hang Chai , Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322
-
[7]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[8]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[9]
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
-
[10]
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
-
[11]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[12]
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
-
[13]
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
-
[14]
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
-
[15]
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
-
[16]
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
-
[17]
Jie Ren , Hao Zong , Yaqun Han , Tianyi Liu , Shufen Zhang , Qiang Xu , Suli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350
-
[18]
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
-
[19]
Zhi-Yuan Yue , Hua-Kai Li , Na Wang , Shan-Shan Liu , Le-Ping Miao , Heng-Yun Ye , Chao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355
-
[20]
Qiaojia GUO , Junkai CAI , Chunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(716)
- HTML views(9)