Citation: Shi-Ming Peng, Yu Zhou, Niu Huang. Improving the accuracy of pose prediction in molecular docking via structural filtering and conformational clustering[J]. Chinese Chemical Letters, ;2013, 24(11): 1001-1004. shu

Improving the accuracy of pose prediction in molecular docking via structural filtering and conformational clustering

  • Corresponding author: Niu Huang, 
  • Received Date: 7 March 2013
    Available Online: 27 May 2013

  • Structure-based virtual screening (molecular docking) is now one of the most pragmatic techniques to leverage target structure for ligand discovery. Accurate binding pose prediction is critical to molecular docking. Here, we describe a general strategy to improve the accuracy of docking pose prediction by implementing the structural descriptor-based filtering and KGS-penalty function-based conformational clustering in an unbiased manner. We assessed our method against 150 high-quality protein-ligand complex structures. Surprisingly, such simple components are sufficient to improve the accuracy of docking pose prediction. The success rate of predicting near-native docking pose increased from 53% of the targets to 78%. We expect that our strategymay have general usage in improving currently available molecular docking programs.
  • 加载中
    1. [1]

      [1] X. Barril, R.E. Hubbard, S.D. Morley, Virtual screening in structure-based drug discovery, Mini Rev. Med. Chem. 4 (2004) 779-791.

    2. [2]

      [2] H. Xu, Z. Jin, S. Liu, et al., Design, synthesis characterization and in vitro biological activity of a series of 3-aryl-6-(bromoarylmethyl)-7H-thiazolo[3,2-b]-1, 2, 4-triazin-7-one derivatives as the novel acetylcholinesterase inhibitors, Chin. Chem. Lett. 23 (2012) 765-768.

    3. [3]

      [3] F. Zeng, S. Peng, L. Li, et al., HAT off: structure-based identification of druglike inhibitors of p300 histone acetyltransferase, Acta Pharm. Sin. 48 (2013) 700-708.

    4. [4]

      [4] X.H. Ma, F. Zhu, X. Liu, et al., Virtual screening methods as tools for drug lead discovery from large chemical libraries, Curr. Med. Chem. 19 (2012) 5562-5571.

    5. [5]

      [5] B.K. Shoichet, Virtual screening of chemical libraries, Nature 432 (2004) 862-865.

    6. [6]

      [6] N. Huang, C. Kalyanaraman, K. Bernacki, M.P. Jacobson, Molecular mechanics methods for predicting protein-ligand binding, Phys. Chem. Chem. Phys. 8 (2006) 5166-5177.

    7. [7]

      [7] R. Cao, M. Liu, M. Yin, et al., Discovery of novel tubulin inhibitors via structurebased hierarchical virtual screening, J. Chem. Inf. Model. 52 (2012) 2730-2740.

    8. [8]

      [8] N. Huang, C. Kalyanaraman, J.J. Irwin, M.P. Jacobson, Physics-based scoring of protein-ligand complexes: enrichment of known inhibitors in large-scale virtual screening, J. Chem. Inf. Model. 46 (2006) 243-253.

    9. [9]

      [9] M.G. Lerner, K.L. Meagher, H.A. Carlson, Automated clustering of probe molecules from solvent mapping of protein surfaces: new algorithms applied to hot-spot mapping and structure-based drug design, J. Comput. Aided Mol. Des. 22 (2008) 727-736.

    10. [10]

      [10] D.M. Lorber, B.K. Shoichet, Hierarchical docking of databases of multiple ligand conformations, Curr. Top. Med. Chem. 5 (2005) 739-749.

    11. [11]

      [11] L.A. Kelley, S.P. Gardner, M.J. Sutcliffe, An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies, Protein Eng. 9 (1996) 1063-1065.

    12. [12]

      [12] J.H. Hsieh, S. Yin, S. Liu, et al., Combined application of cheminformatics-and physical force field-based scoring functions improves binding affinity prediction for CSAR data sets, J. Chem. Inf. Model. 51 (2011) 2027-2035.

    13. [13]

      [13] J.H. Hsieh, S. Yin, X.S. Wang, et al., Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force fieldbased hit scoring functions improves the accuracy of structure-based virtual screening, J. Chem. Inf. Model. 52 (2012) 16-28.

    14. [14]

      [14] M.D. Eldridge, C.W. Murray, T.R. Auton, G.V. Paolini, R.P. Mee, Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes, J. Comput. Aided Mol. Des. 11 (1997) 425-445.

    15. [15]

      [15] C.A. Sotriffer, P. Sanschagrin, H. Matter, G. Klebe, SFCscore: scoring functions for affinity prediction of protein-ligand complexes, Proteins 73 (2008) 395-419.

    16. [16]

      [16] J.B. Dunbar Jr., R.D. Smith, C.Y. Yang, et al., CSAR benchmark exercise of 2010: selection of the protein-ligand complexes, J. Chem. Inf. Model. 51 (2011) 2036-2046.

    17. [17]

      [17] N. Huang, B.K. Shoichet, J.J. Irwin, Benchmarking sets for molecular docking, J. Med. Chem. 49 (2006) 6789-6801.

    18. [18]

      [18] J.J. Irwin, B.K. Shoichet, ZINC-a free database of commercially available compounds for virtual screening, J. Chem. Inf. Model. 45 (2005) 177-182.

    19. [19]

      [19] C.S. Rapp, C. Schonbrun, M.P. Jacobson, C. Kalyanaraman, N. Huang, Automated site preparation in physics-based rescoring of receptor ligand complexes, Proteins 77 (2009) 52-61.

    20. [20]

      [20] E.F. Pettersen, T.D.Goddard, C.C.Huang, et al.,UCSF Chimera-a visualizationsystem for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605-1612.

  • 加载中
    1. [1]

      Yi-Ru BaiQing-Chuan DuanDong-Jie SengYing XuHong-Bo RenJie ZhangDan-Dan ShenLi YangHong-Min LiuShuo Yuan . A comprehensive review of small molecule drugs approved by the FDA in 2024: Advance and prospect. Chinese Chemical Letters, 2025, 36(10): 111025-. doi: 10.1016/j.cclet.2025.111025

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    4. [4]

      Yuhao Jin Zheng Zhou Haixiang Han . Revisit the classical [Fe4S4(SR)4]2– molecular clusters: The steric effects of ligands and their structural transformations. Chinese Journal of Structural Chemistry, 2025, 44(9): 100660-100660. doi: 10.1016/j.cjsc.2025.100660

    5. [5]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    6. [6]

      Yunzhe ZhengSi SunJiali LiuQingyu ZhaoHeng ZhangJing ZhangPeng ZhouZhaokun XiongChuan-Shu HeBo Lai . Application of machine learning for material prediction and design in the environmental remediation. Chinese Chemical Letters, 2025, 36(9): 110722-. doi: 10.1016/j.cclet.2024.110722

    7. [7]

      Qihou LiJiamin LiuFulu ChuJinwei ZhouJieshuangyang ChenZengqiang GuanXiyun YangJie LeiFeixiang Wu . Coordinating lithium polysulfides to inhibit intrinsic clustering behavior and facilitate sulfur redox conversion in lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(5): 110306-. doi: 10.1016/j.cclet.2024.110306

    8. [8]

      Yanyan Yuan Niu Zhang Pangkuan Chen . An unprecedented supramolecular docking strategy enables rapid structure-determination of long alkyl-chain compounds. Chinese Journal of Structural Chemistry, 2025, 44(12): 100721-100721. doi: 10.1016/j.cjsc.2025.100721

    9. [9]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    10. [10]

      Yao ZouDifei GongHaiguang YangHongmei YuGuorong HeNingbo GongLianhua FangGuanhua DuYang Lu . Prediction, screening, characterization, antioxidant and antihypoxic effects of multi-component zwitterionic cocrystals of dietary flavonoids with picolinic acid. Chinese Chemical Letters, 2025, 36(9): 110768-. doi: 10.1016/j.cclet.2024.110768

    11. [11]

      Lu LiJianing ShenQinkun XiaoChaozheng HeJinzhou ZhengChaoqin ChuChen Chen . Stable crystal structure prediction using machine learning-based formation energy and empirical potential function. Chinese Chemical Letters, 2025, 36(11): 110421-. doi: 10.1016/j.cclet.2024.110421

    12. [12]

      Xing-Cheng Hu Qiu-Shui Mu Shu-Jin Bao Yan Zou Xin-Yu Wang Guo-Xin Jin . Ligand conformational adaptability modulated self-assembly of Solomon links (412) and trefoil knots (31). Chinese Journal of Structural Chemistry, 2025, 44(10): 100712-100712. doi: 10.1016/j.cjsc.2025.100712

    13. [13]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    14. [14]

      Yueyan ZhangZhihai YangXia SuoRuicheng WangXuewei NieZafar MahmoodYanping HuoShi-Jian SuShaomin Ji . Tailoring luminescence properties of NIR-BODIPY emitters through donor engineering and intramolecular conformational locking for high-performance solution-processed OLEDs. Chinese Chemical Letters, 2025, 36(12): 111071-. doi: 10.1016/j.cclet.2025.111071

    15. [15]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    16. [16]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    17. [17]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    18. [18]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    19. [19]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    20. [20]

      Xiao-Qian Wan Ya-Ning Xu Jian-Xin Yang Dan Tian Li-Long Dang Feng Bai Lu-Fang Ma . Structural optimization of organometallic cages for enhanced photothermal solar water evaporation. Chinese Journal of Structural Chemistry, 2025, 44(10): 100705-100705. doi: 10.1016/j.cjsc.2025.100705

Metrics
  • PDF Downloads(0)
  • Abstract views(1427)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return