Citation: Shu Sun, Jian-Bing Shi, Yu-Ping Dong, Chen Lin, Xiao-Yu Hub, Le-Yong Wang. A pillar[5]arene-based side-chain pseudorotaxanes and polypseudorotaxanes as novel fluorescent sensors for the selective detection of halogen ions[J]. Chinese Chemical Letters, ;2013, 24(11): 987-992. shu

A pillar[5]arene-based side-chain pseudorotaxanes and polypseudorotaxanes as novel fluorescent sensors for the selective detection of halogen ions

  • Corresponding author: Xiao-Yu Hub,  Le-Yong Wang, 
  • Received Date: 7 April 2013
    Available Online: 26 June 2013

  • A pseudorotaxane and its polypseudorotaxanes formed between pillar[5]arene moieties and n-octylpyrazinium cations as novel fluorescent sensors for the selective detection of halogen ions were reported. A collapse of these pillar[5]arene-based pseudorotaxanes and polypseudorotaxanes occurred upon the addition of Cl-, Br-, and I-(tetrabutylammonium salts), respectively, leading to their fluorescence recovery. The fluorescence enhancement of the pseudorotaxane and the polypseudorotaxanes increases in the order of I-< Br-< Cl-, and the differences in fluorescence intensity could be easily distinguished by naked eyes under UV light illumination.
  • 加载中
    1. [1]

      [1] G. Wenz, B.H. Han, A. Müller, Cyclodextrin rotaxanes and polyrotaxanes, Chem. Rev. 106 (2006) 782-817.

    2. [2]

      [2] A. Harada, A. Hashidzume, H. Yamaguchi, Y. Takashima, Polymeric rotaxanes, Chem. Rev. 109 (2009) 5974-6023.

    3. [3]

      [3] L. Fang, M.A. Olson, D. Benítez, et al., Mechanically bonded macromolecules, Chem. Soc. Rev. 39 (2010) 17-29.

    4. [4]

      [4] Y. Liu, Y.L. Zhao, H.Y. Zhang, et al., Supramolecular polypseudorotaxane with conjugated polyazomethine prepared directly from two inclusion complexes of b-cyclodextrin with tolidine and phthaldehyde, Macromolecules 37 (2004) 6362-6369.

    5. [5]

      [5] P.B. Wan, Y.G. Jiang, Y.P. Wang, Z.Q. Wang, X. Zhang, Tuning surface wettability through photocontrolled reversible molecular shuttle, Chem. Commun. (2008) 5710-5712.

    6. [6]

      [6] H. Li, Y.W. Yang, Gold nanoparticles functionalized with supramolecular macrocycles, Chin. Chem. Lett. 24 (2013) 545-552.

    7. [7]

      [7] D. Taura, S.J. Li, A. Hashidzume, A. Harada, Formation of side-chain heteropolypseudorotaxane composed of a-and b-cyclodextrins with a water-soluble polymer bearing two recognition sites, Macromolecules 43 (2010) 1706-1713.

    8. [8]

      [8] Y.W. Yang, Y. Chen, Y. Liu, Linear polypseudorotaxanes possessing many metal centers constructed from inclusion complexes of a-, b-, and g-cyclodextrins with 4,40-dipyridine, Inorg. Chem. 45 (2006) 3014-3022.

    9. [9]

      [9] F. Wang, B. Zheng, K.L. Zhu, et al., Formation of linear main-chain polypseudorotaxanes with supramolecular polymer backbones via two self-sorting host-guest recognition motifs, Chem. Commun. (2009) 4375-4377.

    10. [10]

      [10] S.L. Li, T.X. Xiao, B.J. Hu, et al., Formation of polypseudorotaxane networks by cross-linking the quadruple hydrogen bonded linear supramolecular polymers via bisparaquat molecules, Chem. Commun. 47 (2011) 10755-10757.

    11. [11]

      [11] T. Ooya, D. Inoue, H.S. Choi, et al., pH-responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl b-cyclodextrin and cucurbit[7]uril, Org. Lett. 8 (2006) 3159-3162.

    12. [12]

      [12] C. Talotta, C. Gaeta, T. Pierro, P. Neri, Sequence stereoisomerism in calixarenebased pseudo[3]rotaxanes, Org. Lett. 13 (2011) 2098-2101.

    13. [13]

      [13] B.M. Rambo, H.Y. Gong, M. Oh, J.L. Sessler, The "texas-sized" molecular box: a versatile building block for the construction of anion-directed mechanically interlocked structures, Acc. Chem. Res. 45 (2012) 1390-1401.

    14. [14]

      [14] T. Ogoshi, S. Kanai, S. Fujinami, T.A. Yamagishi, Y. Nakamoto, para-Bridged symmetrical pillar[5]arenes: their lewis acid catalyzed synthesis and host-guest property, J. Am. Chem. Soc. 130 (2008) 5022-5023.

    15. [15]

      [15] D.R. Cao, Y.H. Kou, J.Q. Liang, et al., A facile and efficient preparation of pillararenes and a pillarquinone, Angew. Chem. Int. Ed. 48 (2009) 9721-9723.

    16. [16]

      [16] P.J. Cragg, K. Sharma, Pillar[5]arenes: fascinating cyclophanes with a bright future, Chem. Soc. Rev. 41 (2011) 597-607.

    17. [17]

      [17] T. Ogoshi, Synthesis of novel pillar-shaped cavitands "pillar[5]arenes" and their application for supramolecular materials, J. Incl. Phenom. Macrocycl. Chem. 72 (2012) 247-262.

    18. [18]

      [18] M. Xue, Y. Yang, X.D. Chi, Z.B. Zhang, F.H. Huang, Pillararenes, a new class of macrocycles for supramolecular chemistry, Acc. Chem. Res. 45 (2012) 1294-1308.

    19. [19]

      [19] Y. Chen, H.Q. Tao, Y.H. Kou, H. Meier, J.L. Fu, D.R. Cao, Synthesis of pillar[7]arene, Chin. Chem. Lett. 23 (2012) 509-511.

    20. [20]

      [20] C.J. Li, Q.Q. Xu, J. Li, F.N. Yao, X.S. Jia, Complex interactions of pillar[5]arene with paraquatsandbis(pyridinium) derivatives,Org. Biomol.Chem.8 (2010)1568-1576.

    21. [21]

      [21] C.J. Li, L. Zhao, J. Li, et al., Self-assembly of [2]pseudorotaxanes based on pillar[5]-arene and bis(imidazolium) cations, Chem. Commun. 46 (2010) 9016-9018.

    22. [22]

      [22] C.J. Li, S.H. Chen, J. Li, et al., Novel neutral guest recognition and interpenetrated complex formation from pillar[5]arenes, Chem. Commun. 47 (2011) 11294-11296.

    23. [23]

      [23] X.Y. Shu, S.H. Chen, J. Li, et al., Highly effective binding of neutral dinitriles by simple pillar[5]arenes, Chem. Commun. 48 (2012) 2967-2969.

    24. [24]

      [24] X.Y. Shu, J.Z. Fan, J. Li, et al., Complexation of neutral 1,4-dihalobutanes with simple pillar[5]arenes that is dominated by dispersion forces, Org. Biomol. Chem. 10 (2012) 3393-3397.

    25. [25]

      [25] C.J. Li, J.W. Ma, L. Zhao, et al., Molecular selective binding of basic amino acids by a water-soluble pillar[5]arene, Chem. Commun. 49 (2013) 1924-1926.

    26. [26]

      [26] C.Y. Han, G.C. Yu, B. Zheng, F.H. Huang, Complexation between pillar[5]arenes and a secondary ammonium salt, Org. Lett. 14 (2012) 1712-1715.

    27. [27]

      [27] B.Y. Xia, J.M. He, Z. Abliz, Y.H. Yu, F.H. Huang, Synthesis of a pillar[5]arene dimer by co-oligomerization and its complexation with n-octyltrimethyl ammonium hexafluorophosphate, Tetrahedron Lett. 52 (2011) 4433-4436.

    28. [28]

      [28] Q.P. Duan, W. Xia, X.Y. Hu, et al., Novel [2]pseudorotaxanes constructed by selfassembly of bis-urea-functionalized pillar[5]arene and linear alkyl dicarboxylates, Chem. Commun. 48 (2012) 8532-8534.

    29. [29]

      [29] L.Z. Liu, D.R. Cao, Y. Jin, et al., Efficient synthesis of copillar[5]arenes and their host-guest properties with dibromoalkanes, Org. Biomol. Chem. 9 (2011) 7007-7010.

    30. [30]

      [30] X.S. Hu, H.M. Deng, J. Li, X.S. Jia, C.J. Li, Selective binding of unsaturated aliphatic hydrocarbons by a pillar[5]arene, Chin. Chem. Lett. 24 (2013) 707-709.

    31. [31]

      [31] Z.B. Zhang, Y. Luo, J.H. Chen, et al., Formation of linear supramolecular polymers that is driven by C-H×p interactions in solution and in the solid state, Angew. Chem. Int. Ed. 50 (2011) 1397-1401.

    32. [32]

      [32] B.Y. Xia, B. Zheng, C.Y. Han, et al., A novel pH-responsive supramolecular polymer constructed by pillar[5]arene-based host-guest interactions, Polym. Chem. 4 (2013) 2019-2024.

    33. [33]

      [33] N.L. Strutt, H.C. Zhang, M.A. Giesener, J.Y. Lei, J.F. Stoddart, A self-complexing and self-assembling pillar[5]arene, Chem. Commun. 48 (2012) 1647-1649.

    34. [34]

      [34] X.Y. Hu, P.Y. Zhang, X. Wu, et al., Pillar[5]arene-based supramolecular polypseudorotaxanes constructed from quadruple hydrogen bonding, Polym. Chem. 3 (2012) 3060-3063.

    35. [35]

      [35] X.Y. Hu, X. Wu, Q.P. Duan, et al., Novel pillar[5]arene-based dynamic polyrotaxanes interlocked by the quadruple hydrogen bonding ureidopyrimidinone motif, Org. Lett. 14 (2012) 4826-4829.

    36. [36]

      [36] S.W. Thomas, G.D. Joly, T.M. Swager, Chemical sensors based on amplifying fluorescent conjugated polymers, Chem. Rev. 107 (2007) 1339-1386.

    37. [37]

      [37] A. Facchetti, p-Conjugated polymers for organic electronics and photovoltaic cell applications, Chem. Mater. 23 (2011) 733-758.

    38. [38]

      [38] A. Bajaj, O.R. Miranda, R. Phillips, et al., Array-based sensing of normal, cancerous, and metastatic cells using conjugated fluorescent polymers, J. Am. Chem. Soc. 132 (2010) 1018-1022.

    39. [39]

      [39] X.L. Feng, L.B. Liu, S. Wang, D.B. Zhu, Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors, Chem. Soc. Rev. 39 (2010) 2411-2419.

    40. [40]

      [40] H.A. Ho, A. Najari, M. Leclerc, Optical detection of DNA and proteins moth cationic polythiophenes, Acc. Chem. Res. 41 (2008) 168-178.

    41. [41]

      [41] B. Liu, G.C. Bazan, Synthesis of cationic conjugated polymers for use in label-free DNA microarrays, Nat. Protoc. 1 (2006) 1698-1702.

    42. [42]

      [42] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.

    43. [43]

      [43] T. Ogoshi, Y. Takashima, H. Yamaguchi, A. Harada, Cyclodextrin-grafted poly (phenylene ethynylene) with chemically-responsive properties, Chem. Commun. (2006) 3702-3704.

    44. [44]

      [44] X.F. Ji, Y. Yao, J.Y. Li, X.Z. Yan, F.H. Huang, A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing, J. Am. Chem. Soc. 135 (2013) 74-77.

    45. [45]

      [45] S. Sun, X.Y. Hu, D.Z. Chen, et al., Pillar[5]arene-based side-chain polypseudorotaxanes as an anion-responsive fluorescent sensor, Polym. Chem. 4 (2013) 2224-2229.

  • 加载中
    1. [1]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    2. [2]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    3. [3]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    4. [4]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    5. [5]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    6. [6]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    7. [7]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    8. [8]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    9. [9]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    10. [10]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    11. [11]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    12. [12]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    13. [13]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    14. [14]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    15. [15]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    16. [16]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    17. [17]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    18. [18]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    19. [19]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    20. [20]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

Metrics
  • PDF Downloads(0)
  • Abstract views(740)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return