Citation: Yan-Qing Zhao, Hong-Yu Wang, Li Qi, Gui-Tian Gao, Shu-Hua Ma. “Soggy sand polymer” composite nanofiber membrane electrolytes for lithium ion batteries[J]. Chinese Chemical Letters, ;2013, 24(11): 975-978.
-
A kind of octanol-modifided silica nanoparticle was fabricated and employed as a framework to form "soggy sand" electrolyte along with 1-butyl-3-methylimidazolium tetrafluoroborate. "Soggy sand" and poly(vinylidene fluoride-hexafluoropropylene) composite electrolyte membranes were electrospun for the first time. The properties of this membrane electrolyte have been evaluated by the mechanical test and electrochemical test. The Young's modulus increased by 275% from 6.8 MPa to 25.5 MPa and the electrical conductivity increased to 7.6×10-5S/cm at 290.15 K when compared to pristine P(VdF-HFP) membrane electrolyte. The conductivity is 3.1×10-4S/cm at 323.15 K.
-
-
[1]
[1] A.J. Bhattacharyya, J. Maier, Second phase effects on the conductivity of nonaqueous salt solutions: "soggy sand electrolytes", Adv. Mater. 16 (9/10) (2004) 811-814.
-
[2]
[2] W.V. Edwards, A.J. Bhattacharyya, A.V. Chadwick, et al., An XAS study of the local environment of ions in soggy sand electrolytes, Electrochem. Solid State Lett. 9 (12) (2006) A564-A567.
-
[3]
[3] S.K. Das, A.J. Bhattacharyya, Oxide particle surface chemistry and ion transport in "soggy sand" electrolytes, J. Phys. Chem. C 113 (16) (2009) 6699-6705.
-
[4]
[4] S.K. Das, A.J. Bhattacharyya, Influence of oxide particle network morphology on ion solvation and transport in "soggy sand" electrolyte, J. Phys. Chem. B 114 (20) (2010) 6830-6835.
-
[5]
[5] S.K. Das, S.S. Mandal, A.J. Bhattacharyya, Ionic conductivity, mechanical strength and Li-ion battery performance of mono-functional and bi-functional ("Janus") "soggy sand" electrolytes, Energy Environ. Sci. 4 (4) (2011) 1391-1399.
-
[6]
[6] A. Jarosik, C. Pfaffenhuber, A. Bunde, et al., Electrochemical investigations of polyethylene glycol-based "soggy sand" electrolytes-from the local mechanism to the overall conduction, Adv. Funct. Mater. 21 (20) (2011) 3961-3966.
-
[7]
[7] A.J. Bhattacharyya, Ion transport in liquid salt solutions with oxide dispersions: "soggy sand" electrolytes, J. Phys. Chem. Lett. 3 (6) (2012) 744-750.
-
[8]
[8] Y.Y. Fang, J.B. Zhang, X.W. Zhou, et al., "Soggy sand" electrolyte based on COOHfunctionalized silica nanoparticles for dye-sensitized solar cells, Electrochem. Commun. 16 (1) (2012) 10-13.
-
[9]
[9] A.J. Bhattacharyya, J. Maier, R. Bock, et al., New class of soft matter electrolytes obtained via heterogeneous doping: percolation effects in "soggy sand" electrolytes, Solid State Ionics 177 (26) (2006) 2565-2568.
-
[10]
[10] Y. Liu, M. Wang, Z. Li, et al., Preparation of porous aminopropylsilsesquioxane by a nonhydrolytic sol-gel method in ionic liquid solvent, Langmuir 21 (4) (2005) 1618-1622.
-
[11]
[11] Z. Li, H. Liu, Y. Liu, et al., A room-temperature ionic-liquid-templated protonconducting gelatinous electrolyte, J. Phys. Chem. B 108 (45) (2004) 17512-17518.
-
[12]
[12] Y. Liu, J. Li, M. Wang, et al., Preparation and properties of nanostructure anatase TiO2 monoliths using 1-butyl-3-methylimidazolium tetrafluoroborate roomtemperature ionic liquids as template solvents, Cryst. Growth Des. 5 (4) (2005) 1643-1649.
-
[13]
[13] S.S. Tang, C.L. Shao, S.Z. Li, Electrospun nanofibers of poly(vinyl pyrrolidone)/EU3+ and its photoluminescence properties, Chin. Chem. Lett. 18 (4) (2007) 465-468.
-
[14]
[14] Y.J. Li, F. Wu, H.R. Chao, et al., A new composite polymer electrolyte based on poly(ethyleneoxide)/polysiloxane/BMImTFSI/organomontmorillonite, Chin. Chem. Lett. 24 (1) (2013) 70-72.
-
[15]
[15] H. Rodrguez, G. Gurau, J.D. Holbrey, et al., Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes, Chem. Commun. 47 (2011) 3222-3224.
-
[16]
[16] X.J. Xiao, X.H. Liu, L.D. Lu, et al., Surface modification of the nano-SiO2 with 1-octyl alcohol, Chin. J. Inorg. Chem. 20 (3) (2004) 335-338.
-
[17]
[17] R. Holomb, A. Martinelli, I. Albinsson, et al., Ionic liquid structure: the conformational isomerism in 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF4]), J. Raman Spectrosc. 39 (2008) 793-805.
-
[1]
-
-
[1]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[2]
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
-
[3]
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
-
[4]
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
-
[5]
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
-
[6]
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
-
[7]
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
-
[8]
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
-
[9]
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
-
[10]
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
-
[11]
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
-
[12]
Haining Peng , Huijun Liu , Chengzong Li , Yingfu Li , Qizhi Chen , Tao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556
-
[13]
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
-
[14]
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
-
[15]
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
-
[16]
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
-
[17]
Chang Liu , Zirui Song , Xinglan Deng , Shihong Xu , Renji Zheng , Wentao Deng , Hongshuai Hou , Guoqiang Zou , Xiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081
-
[18]
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
-
[19]
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
-
[20]
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(721)
- HTML views(5)