Citation: Yan-Qing Zhao, Hong-Yu Wang, Li Qi, Gui-Tian Gao, Shu-Hua Ma. “Soggy sand polymer” composite nanofiber membrane electrolytes for lithium ion batteries[J]. Chinese Chemical Letters, ;2013, 24(11): 975-978. shu

“Soggy sand polymer” composite nanofiber membrane electrolytes for lithium ion batteries

  • Corresponding author: Gui-Tian Gao,  Shu-Hua Ma, 
  • Received Date: 28 April 2013
    Available Online: 7 June 2013

  • A kind of octanol-modifided silica nanoparticle was fabricated and employed as a framework to form "soggy sand" electrolyte along with 1-butyl-3-methylimidazolium tetrafluoroborate. "Soggy sand" and poly(vinylidene fluoride-hexafluoropropylene) composite electrolyte membranes were electrospun for the first time. The properties of this membrane electrolyte have been evaluated by the mechanical test and electrochemical test. The Young's modulus increased by 275% from 6.8 MPa to 25.5 MPa and the electrical conductivity increased to 7.6×10-5S/cm at 290.15 K when compared to pristine P(VdF-HFP) membrane electrolyte. The conductivity is 3.1×10-4S/cm at 323.15 K.
  • 加载中
    1. [1]

      [1] A.J. Bhattacharyya, J. Maier, Second phase effects on the conductivity of nonaqueous salt solutions: "soggy sand electrolytes", Adv. Mater. 16 (9/10) (2004) 811-814.

    2. [2]

      [2] W.V. Edwards, A.J. Bhattacharyya, A.V. Chadwick, et al., An XAS study of the local environment of ions in soggy sand electrolytes, Electrochem. Solid State Lett. 9 (12) (2006) A564-A567.

    3. [3]

      [3] S.K. Das, A.J. Bhattacharyya, Oxide particle surface chemistry and ion transport in "soggy sand" electrolytes, J. Phys. Chem. C 113 (16) (2009) 6699-6705.

    4. [4]

      [4] S.K. Das, A.J. Bhattacharyya, Influence of oxide particle network morphology on ion solvation and transport in "soggy sand" electrolyte, J. Phys. Chem. B 114 (20) (2010) 6830-6835.

    5. [5]

      [5] S.K. Das, S.S. Mandal, A.J. Bhattacharyya, Ionic conductivity, mechanical strength and Li-ion battery performance of mono-functional and bi-functional ("Janus") "soggy sand" electrolytes, Energy Environ. Sci. 4 (4) (2011) 1391-1399.

    6. [6]

      [6] A. Jarosik, C. Pfaffenhuber, A. Bunde, et al., Electrochemical investigations of polyethylene glycol-based "soggy sand" electrolytes-from the local mechanism to the overall conduction, Adv. Funct. Mater. 21 (20) (2011) 3961-3966.

    7. [7]

      [7] A.J. Bhattacharyya, Ion transport in liquid salt solutions with oxide dispersions: "soggy sand" electrolytes, J. Phys. Chem. Lett. 3 (6) (2012) 744-750.

    8. [8]

      [8] Y.Y. Fang, J.B. Zhang, X.W. Zhou, et al., "Soggy sand" electrolyte based on COOHfunctionalized silica nanoparticles for dye-sensitized solar cells, Electrochem. Commun. 16 (1) (2012) 10-13.

    9. [9]

      [9] A.J. Bhattacharyya, J. Maier, R. Bock, et al., New class of soft matter electrolytes obtained via heterogeneous doping: percolation effects in "soggy sand" electrolytes, Solid State Ionics 177 (26) (2006) 2565-2568.

    10. [10]

      [10] Y. Liu, M. Wang, Z. Li, et al., Preparation of porous aminopropylsilsesquioxane by a nonhydrolytic sol-gel method in ionic liquid solvent, Langmuir 21 (4) (2005) 1618-1622.

    11. [11]

      [11] Z. Li, H. Liu, Y. Liu, et al., A room-temperature ionic-liquid-templated protonconducting gelatinous electrolyte, J. Phys. Chem. B 108 (45) (2004) 17512-17518.

    12. [12]

      [12] Y. Liu, J. Li, M. Wang, et al., Preparation and properties of nanostructure anatase TiO2 monoliths using 1-butyl-3-methylimidazolium tetrafluoroborate roomtemperature ionic liquids as template solvents, Cryst. Growth Des. 5 (4) (2005) 1643-1649.

    13. [13]

      [13] S.S. Tang, C.L. Shao, S.Z. Li, Electrospun nanofibers of poly(vinyl pyrrolidone)/EU3+ and its photoluminescence properties, Chin. Chem. Lett. 18 (4) (2007) 465-468.

    14. [14]

      [14] Y.J. Li, F. Wu, H.R. Chao, et al., A new composite polymer electrolyte based on poly(ethyleneoxide)/polysiloxane/BMImTFSI/organomontmorillonite, Chin. Chem. Lett. 24 (1) (2013) 70-72.

    15. [15]

      [15] H. Rodrguez, G. Gurau, J.D. Holbrey, et al., Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes, Chem. Commun. 47 (2011) 3222-3224.

    16. [16]

      [16] X.J. Xiao, X.H. Liu, L.D. Lu, et al., Surface modification of the nano-SiO2 with 1-octyl alcohol, Chin. J. Inorg. Chem. 20 (3) (2004) 335-338.

    17. [17]

      [17] R. Holomb, A. Martinelli, I. Albinsson, et al., Ionic liquid structure: the conformational isomerism in 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF4]), J. Raman Spectrosc. 39 (2008) 793-805.

  • 加载中
    1. [1]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    2. [2]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    3. [3]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    4. [4]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    5. [5]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    6. [6]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    7. [7]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    8. [8]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    9. [9]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    10. [10]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    11. [11]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    12. [12]

      Haining PengHuijun LiuChengzong LiYingfu LiQizhi ChenTao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556

    13. [13]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    14. [14]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    15. [15]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    18. [18]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    19. [19]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    20. [20]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

Metrics
  • PDF Downloads(0)
  • Abstract views(721)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return