Citation: Teck-Ming Koh, Sie-Tiong Ha, Guan-Yeow Yeap, Hong-Cheu Lin. New mesomorphic benzothiazol derivatives:Synthesis and characterization[J]. Chinese Chemical Letters, ;2013, 24(10): 926-928.
-
In this paper, the synthesis of new mesomorphic benzothiazolyl derivatives, 6-ethoxy-2-[4-(4-alkyloxybenzoyloxy)benzylidenamino]benzothiazoles, is presented. The structures of the title compounds were elucidated using spectroscopic techniques, such as FT-IR, NMR (1H and 13C), elemental analysis and EI-MS. The mesomorphic behaviours of these compounds were determined by differential scanning calorimetric and polarizing optical microscopic techniques. Compounds exhibited nematic and tilted smectic phases upon heating from crystal phase. An obvious odd-even effect was observed in this homologous series.
-
Keywords:
- Benzothiazole,
- Nematic,
- Smectic C,
- Mesomorphic
-
-
[1]
[1] D. Adam, F. Closs, T. Frey, et al., Transient photoconductivity in a discotic liquid crystal, Phys. Rev. Lett. 70 (1993) 457-460.
-
[2]
[2] M.R. Huang, X.G. Li, J. Wang, Liquid crystalline polyaniline and its derivatives, Tongji Daxue Xuebao 31 (2003) 848-852 (in Chinese).
-
[3]
[3] X.G. Li, M.R. Huang, W. Duan, Y.L. Yang, Novel multifunctional polymers from aromatic diamines by oxidative polymerizations, Chem. Rev. 102 (2002) 2925-3030.
-
[4]
[4] X.G. Li, Q.F. Lu, M.R. Huang, Self-stabilized nanoparticles of intrinsically conducting co-polymers from 5-sulfonic-2-anisidine, Small 4 (2008) 1201-1209.
-
[5]
[5] X.G. Li, M.R. Huang, Facile optimal synthesis of inherently electroconductive polythiophene nanoparticles, Chem. Eur. J. 15 (2009) 6446-6455.
-
[6]
[6] W. Pisula, M. Zorn, J.Y. Chang, K. Mullen, R. Zentel, Liquid crystalline ordering and charge transport in semiconducting materials, Macromol. Rapid Commun. 30 (2009) 1179-1202.
-
[7]
[7] B.P. Chandra, N. Periasamy, J.N. Das, Triboluminescence, a new tool to investigate fracture-initiation time of crystals under stress, Pramana 8 (1977) 395-401.
-
[8]
[8] M. Funahashi, J. Hanna, Fast hole transport in a new calamitic liquid crystal of 2-(40-heptyloxyphenyl)-6-dodecylthiobenzothiazole, Phys. Rev. Lett. 78 (1997) 2184-2187.
-
[9]
[9] A. Ohno, A. Haruyama, K. Kurotaki, J. Hanna, Charge-carrier transport in smectic mesophases of biphenyls, J. Appl. Phys. 102 (2007) 083711.
-
[10]
[10] S.T. Ha, T.M. Koh, G.Y. Yeap, et al., Synthesis and mesomorphic properties of 2-(4-alkyloxyphenyl)benzothiazoles, Mol. Cryst. Liq. Cryst. 506 (2009) 56-70.
-
[11]
[11] S.T. Ha, T.M. Koh, H.C. Lin, et al., Heterocyclic benzothiazole-based liquid crystals: synthesis and mesomorphic, Liq. Cryst. 36 (2009) 917-925.
-
[12]
[12] S.T. Ha, T.M. Koh, S.T. Ong, Y. Sivasothy, Synthesis and mesomorphic behavior of benzothiazole-based liquid crystals having terminal methoxyl group, Chin. Chem. Lett. 20 (2009) 1449-1452.
-
[13]
[13] S.T. Ha, T.M. Koh, G.Y. Yeap, et al., Mesogenic Schiff base esters with benzothiazole core: synthesis and phase transition studies, Phase Transitions 83 (2010) 195-204.
-
[14]
[14] L.L. Lai, C.H. Wang, W.P. Hsien, H.C. Lin, Synthesis and characterization of liquid crystalline molecules containing the quinoline unit, Mol. Cryst. Liq. Cryst. 287 (1996) 177-181.
-
[15]
[15] O.N. Kadkin, H. Han, Y.G. Galyametdinov, Synthesis, computational modelling and liquid crystalline properties of some [3]ferrocenophane-containing Schiff's bases and β-aminovinylketone: molecular geometry-phase behaviour relationship, J. Organomet. Chem. 692 (2007) 5571-5582.
-
[16]
[16] G.Y. Yeap, S.T. Ha, P.L. Boey, et al., Synthesis and mesomorphic properties of Schiff base esters ortho-hydroxy-para-alkyloxybenzylidene-para-substituted anilines, Mol. Cryst. Liq. Cryst. 452 (2006) 73-84.
-
[17]
[17] Analytical and spectroscopic data for the representative compound C2H5O-9BSPEP: EI-MS m/z (rel. int. %): 544 (22) [M+], 247 (100), IR vmax (KBr, cm-1): v 3056 (C-H aromatic); 2922, 2851 (C-H aliphatic); 1740 (C5O ester); 1609 (C5N thiazole), 1273 (C-O, aromatic ether) 1H NMR (400 MHz, CDCl3): d 0.9 (t, 3H, J = 6.6 Hz, CH3-), 1.3 (m, 10H, CH3-(CH2)5-(CH2)3-O-), 1.4 (t, 3H, J = 6.8 Hz, CH3-CH2-O-), 1.5 (p, 2H, J = 6.1 Hz,-CH2-CH2-CH2-O-), 1.8 (p, 2H, J = 7.1 Hz,-CH2-CH2-O-), 4.0 (t, 2H, J = 6.6 Hz,-CH2-O-), 4.1 (t, 2H, J = 7.1 Hz, CH3-CH2-O-), 7.0 (d, 2H, J = 8.8 Hz, Ar-H), 7.1 (d, 1H, J = 9.0 Hz, Ar-H), 7.3 (s, 1H, Ar-H), 7.4 (d, 2H, J = 8.6 Hz, Ar-H), 7.9 (d, 1H, J = 8.8 Hz, Ar-H), 8.1 (d, 2H, J = 8.6 Hz, Ar-H), 8.2 (d, 2H, J = 8.8 Hz, Ar-H), 9.0 (s, 1H,-N5CH-); 13C NMR (100 MHz, CDCl3): δ 14.23 (CH3-), 14.94 (CH3-CH2O-), 15.01, 22.77, 26.07, 29.17, 29.35, 29.46, 29.61, 31.97 for methylene carbons (CH3-(CH2)8-), 64.18 (-CH2O-), 68.47 (CH3-CH2O-), 105.14, 114.50, 116.22, 121.06, 122.70, 123.85, 131.44, 132.50, 133.98, 135.93, 146.06, 154.91, 156.04, 157.18 for aromatic carbons, 163.88 (N=CH, Schiff base), 164.47 (N=C, thiazole), 169.20 (-COO-). Anal. calcd. for C32H36N2O4S: C, 70.56, H, 6.66, N, 5.14; Found: C, 70.48, H, 6.74, N, 5.03.
-
[18]
[18] D. Demus, L. Richter, Textures of Liquid Crystals, Verlag Chemie, New York, 1978.
-
[19]
[19] I. Dierking, Textures of Liquid Crystals, Wiley-VCH, Weinheim, 2003.
-
[20]
[20] Q. Wei, L. Shi, H. Cao, L.P. Wang, H. Yang, Synthesis and mesomorphic properties of two series of new azine-type liquid crystals, Liq. Cryst. 35 (2008) 581-585.
-
[21]
[21] M.A. Guillevic, M.E. Light, S.J. Coles, et al., Synthesis of dinuclear complexes of rhenium(I) as potential metallomesogens, J. Chem. Soc. Dalton Trans. 9 (2000) 1437-1445.
-
[22]
[22] P.A. Henderson, R.T. Inkster, J.M. Seddon, C.T. Imrie, Highly non-linear liquid crystal tetramers, J. Mater. Chem. 11 (2001) 2722-2731.
-
[23]
[23] G.Y. Yeap, T.C. Hng, D. Takeuchi, et al., Non-symmetric liquid crystal dimers: high thermal stability in nematic phases enhanced by thiophene-2-carboxylate moieties, Mol. Cryst. Liq. Cryst. 506 (2009) 134-149.
-
[24]
[24] A.K. Prajapati, N.L. Bonde, Mesogenic benzothiazole derivatives with methoxy substituents, J. Chem. Sci. 118 (2006) 203-210.
-
[25]
[25] A.K. Prajapati, N.L. Bonde, Mesogenic benzothiazole derivatives with a polar nitro substituent, Mol. Cryst. Liq. Cryst. 501 (2009) 72-85.
-
[1]
-
-
[1]
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
-
[2]
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
-
[3]
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
-
[4]
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
-
[5]
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
-
[6]
Chen Li , Ziyuan Zhao , Shouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128
-
[7]
Hongjin Shi , Guoyin Yin , Xi Lu , Yangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674
-
[8]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[9]
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
-
[10]
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
-
[11]
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
-
[12]
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
-
[13]
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
-
[14]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[15]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[16]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[17]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[18]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[19]
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
-
[20]
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(657)
- HTML views(10)