Citation: Teck-Ming Koh, Sie-Tiong Ha, Guan-Yeow Yeap, Hong-Cheu Lin. New mesomorphic benzothiazol derivatives:Synthesis and characterization[J]. Chinese Chemical Letters, ;2013, 24(10): 926-928. shu

New mesomorphic benzothiazol derivatives:Synthesis and characterization

  • Corresponding author: Sie-Tiong Ha, 
  • Received Date: 12 April 2013
    Available Online: 29 May 2013

  • In this paper, the synthesis of new mesomorphic benzothiazolyl derivatives, 6-ethoxy-2-[4-(4-alkyloxybenzoyloxy)benzylidenamino]benzothiazoles, is presented. The structures of the title compounds were elucidated using spectroscopic techniques, such as FT-IR, NMR (1H and 13C), elemental analysis and EI-MS. The mesomorphic behaviours of these compounds were determined by differential scanning calorimetric and polarizing optical microscopic techniques. Compounds exhibited nematic and tilted smectic phases upon heating from crystal phase. An obvious odd-even effect was observed in this homologous series.
  • 加载中
    1. [1]

      [1] D. Adam, F. Closs, T. Frey, et al., Transient photoconductivity in a discotic liquid crystal, Phys. Rev. Lett. 70 (1993) 457-460.

    2. [2]

      [2] M.R. Huang, X.G. Li, J. Wang, Liquid crystalline polyaniline and its derivatives, Tongji Daxue Xuebao 31 (2003) 848-852 (in Chinese).

    3. [3]

      [3] X.G. Li, M.R. Huang, W. Duan, Y.L. Yang, Novel multifunctional polymers from aromatic diamines by oxidative polymerizations, Chem. Rev. 102 (2002) 2925-3030.

    4. [4]

      [4] X.G. Li, Q.F. Lu, M.R. Huang, Self-stabilized nanoparticles of intrinsically conducting co-polymers from 5-sulfonic-2-anisidine, Small 4 (2008) 1201-1209.

    5. [5]

      [5] X.G. Li, M.R. Huang, Facile optimal synthesis of inherently electroconductive polythiophene nanoparticles, Chem. Eur. J. 15 (2009) 6446-6455.

    6. [6]

      [6] W. Pisula, M. Zorn, J.Y. Chang, K. Mullen, R. Zentel, Liquid crystalline ordering and charge transport in semiconducting materials, Macromol. Rapid Commun. 30 (2009) 1179-1202.

    7. [7]

      [7] B.P. Chandra, N. Periasamy, J.N. Das, Triboluminescence, a new tool to investigate fracture-initiation time of crystals under stress, Pramana 8 (1977) 395-401.

    8. [8]

      [8] M. Funahashi, J. Hanna, Fast hole transport in a new calamitic liquid crystal of 2-(40-heptyloxyphenyl)-6-dodecylthiobenzothiazole, Phys. Rev. Lett. 78 (1997) 2184-2187.

    9. [9]

      [9] A. Ohno, A. Haruyama, K. Kurotaki, J. Hanna, Charge-carrier transport in smectic mesophases of biphenyls, J. Appl. Phys. 102 (2007) 083711.

    10. [10]

      [10] S.T. Ha, T.M. Koh, G.Y. Yeap, et al., Synthesis and mesomorphic properties of 2-(4-alkyloxyphenyl)benzothiazoles, Mol. Cryst. Liq. Cryst. 506 (2009) 56-70.

    11. [11]

      [11] S.T. Ha, T.M. Koh, H.C. Lin, et al., Heterocyclic benzothiazole-based liquid crystals: synthesis and mesomorphic, Liq. Cryst. 36 (2009) 917-925.

    12. [12]

      [12] S.T. Ha, T.M. Koh, S.T. Ong, Y. Sivasothy, Synthesis and mesomorphic behavior of benzothiazole-based liquid crystals having terminal methoxyl group, Chin. Chem. Lett. 20 (2009) 1449-1452.

    13. [13]

      [13] S.T. Ha, T.M. Koh, G.Y. Yeap, et al., Mesogenic Schiff base esters with benzothiazole core: synthesis and phase transition studies, Phase Transitions 83 (2010) 195-204.

    14. [14]

      [14] L.L. Lai, C.H. Wang, W.P. Hsien, H.C. Lin, Synthesis and characterization of liquid crystalline molecules containing the quinoline unit, Mol. Cryst. Liq. Cryst. 287 (1996) 177-181.

    15. [15]

      [15] O.N. Kadkin, H. Han, Y.G. Galyametdinov, Synthesis, computational modelling and liquid crystalline properties of some [3]ferrocenophane-containing Schiff's bases and β-aminovinylketone: molecular geometry-phase behaviour relationship, J. Organomet. Chem. 692 (2007) 5571-5582.

    16. [16]

      [16] G.Y. Yeap, S.T. Ha, P.L. Boey, et al., Synthesis and mesomorphic properties of Schiff base esters ortho-hydroxy-para-alkyloxybenzylidene-para-substituted anilines, Mol. Cryst. Liq. Cryst. 452 (2006) 73-84.

    17. [17]

      [17] Analytical and spectroscopic data for the representative compound C2H5O-9BSPEP: EI-MS m/z (rel. int. %): 544 (22) [M+], 247 (100), IR vmax (KBr, cm-1): v 3056 (C-H aromatic); 2922, 2851 (C-H aliphatic); 1740 (C5O ester); 1609 (C5N thiazole), 1273 (C-O, aromatic ether) 1H NMR (400 MHz, CDCl3): d 0.9 (t, 3H, J = 6.6 Hz, CH3-), 1.3 (m, 10H, CH3-(CH2)5-(CH2)3-O-), 1.4 (t, 3H, J = 6.8 Hz, CH3-CH2-O-), 1.5 (p, 2H, J = 6.1 Hz,-CH2-CH2-CH2-O-), 1.8 (p, 2H, J = 7.1 Hz,-CH2-CH2-O-), 4.0 (t, 2H, J = 6.6 Hz,-CH2-O-), 4.1 (t, 2H, J = 7.1 Hz, CH3-CH2-O-), 7.0 (d, 2H, J = 8.8 Hz, Ar-H), 7.1 (d, 1H, J = 9.0 Hz, Ar-H), 7.3 (s, 1H, Ar-H), 7.4 (d, 2H, J = 8.6 Hz, Ar-H), 7.9 (d, 1H, J = 8.8 Hz, Ar-H), 8.1 (d, 2H, J = 8.6 Hz, Ar-H), 8.2 (d, 2H, J = 8.8 Hz, Ar-H), 9.0 (s, 1H,-N5CH-); 13C NMR (100 MHz, CDCl3): δ 14.23 (CH3-), 14.94 (CH3-CH2O-), 15.01, 22.77, 26.07, 29.17, 29.35, 29.46, 29.61, 31.97 for methylene carbons (CH3-(CH2)8-), 64.18 (-CH2O-), 68.47 (CH3-CH2O-), 105.14, 114.50, 116.22, 121.06, 122.70, 123.85, 131.44, 132.50, 133.98, 135.93, 146.06, 154.91, 156.04, 157.18 for aromatic carbons, 163.88 (N=CH, Schiff base), 164.47 (N=C, thiazole), 169.20 (-COO-). Anal. calcd. for C32H36N2O4S: C, 70.56, H, 6.66, N, 5.14; Found: C, 70.48, H, 6.74, N, 5.03.

    18. [18]

      [18] D. Demus, L. Richter, Textures of Liquid Crystals, Verlag Chemie, New York, 1978.

    19. [19]

      [19] I. Dierking, Textures of Liquid Crystals, Wiley-VCH, Weinheim, 2003.

    20. [20]

      [20] Q. Wei, L. Shi, H. Cao, L.P. Wang, H. Yang, Synthesis and mesomorphic properties of two series of new azine-type liquid crystals, Liq. Cryst. 35 (2008) 581-585.

    21. [21]

      [21] M.A. Guillevic, M.E. Light, S.J. Coles, et al., Synthesis of dinuclear complexes of rhenium(I) as potential metallomesogens, J. Chem. Soc. Dalton Trans. 9 (2000) 1437-1445.

    22. [22]

      [22] P.A. Henderson, R.T. Inkster, J.M. Seddon, C.T. Imrie, Highly non-linear liquid crystal tetramers, J. Mater. Chem. 11 (2001) 2722-2731.

    23. [23]

      [23] G.Y. Yeap, T.C. Hng, D. Takeuchi, et al., Non-symmetric liquid crystal dimers: high thermal stability in nematic phases enhanced by thiophene-2-carboxylate moieties, Mol. Cryst. Liq. Cryst. 506 (2009) 134-149.

    24. [24]

      [24] A.K. Prajapati, N.L. Bonde, Mesogenic benzothiazole derivatives with methoxy substituents, J. Chem. Sci. 118 (2006) 203-210.

    25. [25]

      [25] A.K. Prajapati, N.L. Bonde, Mesogenic benzothiazole derivatives with a polar nitro substituent, Mol. Cryst. Liq. Cryst. 501 (2009) 72-85.

  • 加载中
    1. [1]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    2. [2]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    3. [3]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    4. [4]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    5. [5]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    6. [6]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    7. [7]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    10. [10]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    11. [11]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    12. [12]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    13. [13]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    14. [14]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    15. [15]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    20. [20]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

Metrics
  • PDF Downloads(0)
  • Abstract views(656)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return