Citation: Javad Safaei-Ghomi, Raheleh Teymuri, Hossein Shahbazi-Alavi, Abolfazl Ziarati. SnCl2/nano SiO2:A green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized 4H-pyrans[J]. Chinese Chemical Letters, ;2013, 24(10): 921-925. shu

SnCl2/nano SiO2:A green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized 4H-pyrans

  • Corresponding author: Javad Safaei-Ghomi, 
  • Received Date: 21 February 2013
    Available Online: 6 June 2013

    Fund Project:

  • A highly efficient and general method for the synthesis of polyfunctionalized 4H-pyrans is established through a one-pot multicomponent cyclocondensation of aromatic aldehydes with CH acids, malononitrile and ethyl acetoacetate using nano silica supported tin (Ⅱ) chloride as a catalyst. In this method SnCl2/nano SiO2 was used as green and reusable catalyst. Excellent yields, short reaction times, simple workup, and inexpensiveness and commercially availability of the catalyst are the advantages of this method.
  • 加载中
    1. [1]

      [1] M.H. Elnagdi, H.A. Elfaham, G.E.H. Elgemeie, Utility of α,β-unsaturated nitrirles in heterocyclic synthesis, Heterocycles 20 (1983) 519-550.

    2. [2]

      [2] S. Goldmann, J. Stoltefus, 1,4-Dihydropyridines: effects of chirality and conformation on the calcium antagonist and calcium agonist activities, Angew. Chem. Int. Ed. Engl. 30 (1991) 1559-1578.

    3. [3]

      [3] L.L. Andreani, E. Lapi, Aspects and orientations of modern pharmacognosy, Boll. Chim. Farm. 99 (1960) 583-586.

    4. [4]

      [4] L. Bonsignore, G. Loy, D. Secci, A. Calignano, Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives, Eur. J. Med. Chem. 28 (1993) 517-520.

    5. [5]

      [5] G.R. Green, J.M. Evans, A.K. Vong, Pyrans and their benzo derivatives synthesis, in: A.R. Katritsky, C. Rees, E.F.V. Scriven (Eds.), Comprehensive Heterocyclic Chemistry Ⅱ, Pergamon Press, Oxford, 1995, p. 469.

    6. [6]

      [6] A. Sánchez, F. Hernández, P.C. Cruz, et al., Infrared irradiation-assisted multicomponent synthesis of 2-amino-3-cyano-4H-pyran derivatives, J. Mex. Chem. Soc. 56 (2012) 121-127.

    7. [7]

      [7] K. Urbahns, E. Horvath, J.P. Stasch, F. Mauler, 4-Phenyl-4H-pyrans as IKCa channel blockers, Bioorg. Med. Chem. Lett. 13 (2003) 2637-2639.

    8. [8]

      [8] I. Devi, P.J. Bhuyan, Sodium bromide catalysed one-pot synthesis of tetrahydrobenzo[ b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions, Tetrahedron Lett. 45 (2004) 8625-8627.

    9. [9]

      [9] A. Domling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106 (2006) 17-89.

    10. [10]

      [10] D.J. Ramon, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. 44 (2005) 1602-1634.

    11. [11]

      [11] C. Ma, Y. Yang, Thiazolium-mediated multicomponent reactions: a facile synthesis of 3-aminofuran derivatives, Org. Lett. 7 (2005) 1343-1345.

    12. [12]

      [12] E. Soleimani, M.M. Khodaei, N. Batooie, M. Baghbanzadeh, Water-prompted synthesis of alkyl nitrile derivatives via Knoevenagel condensation and Michael addition reaction, Green Chem. 13 (2011) 566-569.

    13. [13]

      [13] G. Evano, N. Blanchard, M. Toumi, New copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis, Chem. Rev. 108 (2008) 3054-3131.

    14. [14]

      [14] N. Martin, C. Pascual, C. Seoane, J.L. Soto, The use of some activated nitriles in heterocyclic syntheses, Heterocycles 26 (1987) 2811-2816.

    15. [15]

      [15] S.E. Zayed, E.I. AbouElmaged, S.A. Metwally, M.H. Elnagdi, Reactions of sixmembered heterocyclic b-enaminonitriles with electrophilic reagents, Collect. Czech. Chem. Commun. 56 (1991) 2175-2182.

    16. [16]

      [16] D. Kumar, R.V. Buchi, S. Sharad, U. Dube, S. Kapur, A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes, Eur. J. Med. Chem. 44 (2009) 3805-3809.

    17. [17]

      [17] N. SeshuBabu, N. Pasha, K.T. VenkateswaraRao, P.S. Sai Prasad, N. Lingaiah, A heterogeneous strong basic Mg/La mixed oxide catalyst for efficient synthesis of polyfunctionalized pyrans, Tetrahedron Lett. 49 (2008) 2730-2733.

    18. [18]

      [18] D. Fang, J.M. Yang, H.B. Zhang, C.M. Jiao, Synthesis of 4H-pyrans catalyzed by thermol-regulated PEG1000-based ionic liquid/EM, J. Ind. Eng. Chem. 17 (2011) 386-388.

    19. [19]

      [19] P. Bhattacharyya, K. Pradhan, S. Paul, A.R. Das, Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media, Tetrahedron Lett. 53 (2012) 4687-4691.

    20. [20]

      [20] J. Wolinsky, H.S. Haue, Substituted γ-pyrans, J. Org. Chem. 34 (1969) 3169.

    21. [21]

      [21] J.C. Wilson, G.S. Mcgrath, S.A. Srinivasan, 4H-pyran charge control agents for electrostatographic toners and developers, US Patent, 6 221 550 (2001).

    22. [22]

      [22] P. Salehi, M. Dabiri, M.A. Zolfigol, M.A. Bodaghi Fard, Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones, Tetrahedron Lett. 44 (2003) 2889-2891.

    23. [23]

      [23] M. Moghaddas, A. Davoodnia, M. Heravi, N. Tavakoli-Hoseini, Sulfonated carbon catalyzed Biginelli reaction for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and-thiones, Chin. J. Catal. 33 (2012) 706-710.

    24. [24]

      [24] D.C. Sherrington, A.P. Kybett, Supported Catalysts and Their Applications, The Royal Society of Chemistry, Cambridge, 2001p. 196.

    25. [25]

      [25] L. Huang, Z. Wang, T.P. Ang, J. Tan, P.K. Wong, A novel SiO2 supported Pd metal catalyst for the Heck reaction, Catal. Lett. 112 (2006) 219-225.

    26. [26]

      [26] V. Siddaiah, G.M. Basha, R. Srinuvasarao, S.K. Yadav, HClO4-SiO2: an efficient reusable catalyst for the synthesis of 3,4,5-trisubstituted 1,2,4-triazoles under solvent-free conditions, Catal. Lett. 141 (2011) 1511-1520.

    27. [27]

      [27] A. Ziarati, J. Safaei-Ghomi, S. Rohani, Pseudo five-component process for the synthesis of functionalized tricarboxamides using CuI nanoparticles as reusable catalyst, Chin. Chem. Lett. 24 (2013) 195-198.

    28. [28]

      [28] J. Safaei-Ghomi, M.A. Ghasemzadeh, Zinc oxide nanoparticles: a highly efficient and readily recyclable catalyst for the synthesis of xanthenes, Chin. Chem. Lett. 23 (2012) 1225-1229.

    29. [29]

      [29] A. Ziarati, J. Safaei-Ghomi, S. Rohani, Sonochemically synthesis of pyrazolones using reusable catalyst CuI nanoparticles that was prepared by sonication, Ultrason. Sonochem. 20 (2013) 1069-1075.

    30. [30]

      [30] H.R. Darabi, K. Aghapoor, F. Mohsenzadeh, et al., Heterogeneous SnCl2/SiO2 versus homogeneous SnCl2 acid catalysis in the benzo[N,N]-heterocyclic condensation, Bull. Korean Chem. Soc. 32 (2011) 213-218.

    31. [31]

      [31] B.F. Mirjalili, A. Bamoniri, A. Akbari, One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones (thiones) promoted by nano-BF3 SiO2, J. Iran Chem. Soc. 8 (2011) S135-S140.

    32. [32]

      [32] M.M. Heravi, Y.S. Beheshtiha, Z. Pirnia, S. Sadjadi, M. Adibi, One-pot, threecomponent synthesis of 4H-pyrans using Cu(Ⅱ) oxymetasilicate, Synth. Commun. 39 (2009) 3663-3667.

    33. [33]

      [33] U.R. Pratap, D.V. Jawale, P.D. Netankar, R.A. Mane, Baker's yeast catalyzed one-pot three-component synthesis of polyfunctionalized 4H-pyrans, Tetrahedron Lett. 52 (2011) 5817-5819.

    34. [34]

      [34] S. Banerjee, Al Horn, H. Khatri, G. Sereda, A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst, Tetrahedron Lett. 52 (2011) 1878-1881.

    35. [35]

      [35] K. Urbahns, H.G. Heine, B. Junge, et al., Substituted 4H-pyrans with a modulating effect on calcium channels, EP Patents, 0758648 (1997).

  • 加载中
    1. [1]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    2. [2]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    3. [3]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    4. [4]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    5. [5]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    6. [6]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    7. [7]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    8. [8]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    9. [9]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    10. [10]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    11. [11]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    12. [12]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    13. [13]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    14. [14]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    15. [15]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    16. [16]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    17. [17]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    18. [18]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    19. [19]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    20. [20]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

Metrics
  • PDF Downloads(0)
  • Abstract views(793)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return