Citation: Qin-He Pan, Rui-Jing Tian, Sui-Jun Liu, Qi-Hui Wu, Yuan-Yuan Zhu, Qiang Chen, Xiao-Yan Ren, Tong-Liang Hu. [Co(NH3)6]2[Cd8(C2O4)11(H2O)4]·8H2O:A 5-connected sqp topological metal-organic framework co-templated by Co(NH3)63+ cation and (H2O)4 cluster[J]. Chinese Chemical Letters, ;2013, 24(10): 861-865. shu

[Co(NH3)6]2[Cd8(C2O4)11(H2O)4]·8H2O:A 5-connected sqp topological metal-organic framework co-templated by Co(NH3)63+ cation and (H2O)4 cluster

  • Corresponding author: Qin-He Pan,  Tong-Liang Hu, 
  • Received Date: 9 April 2013
    Available Online: 4 June 2013

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21101047) (No. 21101047) the Program for New Century Excellent Talents in University (No. NCET-11-0929) (No. NCET-11-0929) the Natural Science Foundation of Hainan Province (No. 211010) (No. 211010) the Priming Scientific Research Foundation of Hainan University (No. kyqd1051). (No. kyqd1051)

  • In our efforts to construct new metal-organic frameworks (MOFs) by template-directing method, a new cadmium oxalate, [Co(NH3)6]2[Cd8(C2O4)11(H2O)4]·8H2O (denoted HNU-1), has been synthesized under hydrothermal condition in the presence of Co(NH3)6Cl3. The crystal structure of HNU-1 was determined by single-crystal X-ray diffraction (monoclinic, C2/c), a = 11.126(2)Å, b = 17.361(4)Å, c = 16.119(3)Å, β = 102.40(3)°, V = 3040.8(10)Å3 and Z = 8. The open framework of HNU-1 contains 12-ring channels and exhibits a 5-connected sqp topological network with dinuclear Cd(Ⅱ) clusters acting as nodes. The Co(NH3)63+ cations and unusual hydrogen-bonded (H2O)4 clusters are found in the 12-ring channels with an alternative arrangement. It is believed that the (H2O)4 clusters play a co-templating role in the crystallization of HNU-1.
  • 加载中
    1. [1]

      [1] B. Chen, M. Eddaoudi, S.T. Hyde, M. O'Keeffe, O.M. Yaghi, Interwoven metal-organic framework on a periodic minimal surface with extra-large pores, Science 291 (2001) 1021-1023.

    2. [2]

      [2] G. Férey, C. Mellot-Draznieks, C. Serre, et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309 (2005) 2040-2042.

    3. [3]

      [3] Y.F. Zeng, X. Hu, F.C. Liu, X.H. Bu, Azido-mediated systems showing different magnetic behaviors, Chem. Soc. Rev. 38 (2009) 469-480.

    4. [4]

      [4] X.M. Chen, M.L. Tong, A new bridge between coordination chemistry and organic synthetic chemistry, Acc. Chem. Res. 40 (2007) 162-170.

    5. [5]

      [5] S.L. Qiu, G.S. Zhu, Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties, Coord. Chem. Rev. 253 (2009) 2891-2911.

    6. [6]

      [6] B. Moulton, M.J. Zaworotko, From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids, Chem. Rev. 101 (2011) 1629-1658.

    7. [7]

      [7] Y.K. Park, S.B. Choi, H. Kim, et al., Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter, Angew. Chem. Int. Ed. 46 (2007) 8230-8233.

    8. [8]

      [8] J. An, S.J. Geib, N.L. Rosi, Cation-triggered drug release from a porous zinc-adeninate metal-organic framework, J. Am. Chem. Soc. 131 (2009) 8376-8377.

    9. [9]

      [9] J.R. Li, Y. Tao, Q. Yu, et al., Selective gas sorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels, Chem. Eur. J. 14 (2008) 2771-2776.

    10. [10]

      [10] Q.R. Fang, G.S. Zhu, Z. Jin, et al., Mesoporous metal-organic framework with rare etb topology for hydrogen storage and dye assembly, Angew. Chem. Int. Ed. 46 (2007) 6638-6642.

    11. [11]

      [11] Q.H. Pan, Q. Chen, Z. Chang, et al., A 3D lead(Ⅱ) coordination polymer containing helical chains with rare ecl topology, Chin. J. Inorg. Chem. 26 (2010) 2299-2302.

    12. [12]

      [12] K.H. He, Y.W. Li, Y.Q. Chen, Z. Chang, A new 8-connected self-penetrating metal-organic framework based on dinuclear cadium clusters as secondary building units, Chin. Chem. Lett. 24 (2013) 691-694.

    13. [13]

      [13] M. Eddaoudi, J. Kim, N. Rosi, et al., Systematic design of pore size and functionality in isoreticular metal-organic frameworks and application in methane storage, Science 295 (2002) 469-472.

    14. [14]

      [14] O.K. Farha, C.D. Malliakas, M.G. Kanatzidis, J.T. Hupp, Control over catenation in metal organic frameworks via rational design of the organic building block, J. Am. Chem. Soc. 132 (2009) 950-952.

    15. [15]

      [15] X.S. Wang, S.Q. Ma, D.F. Sun, S. Parkin, H.C. Zhou, A mesoporous metal-organic framework with permanent porosity, J. Am. Chem. Soc. 128 (2006) 16474-16475.

    16. [16]

      [16] F. Nouar, J.F. Eubank, T. Bousquet, et al., Tunable zeolite-like metal-organic frameworks (ZMOFs): lithium and magnesium ion exchange and H2-(rho-ZMOF) interaction studies, J. Am. Chem. Soc. 130 (2008) 1833-1835.

    17. [17]

      [17] J.J. Perry IV, V.Ch. Kravtsov, G.J. McManus, M.J. Zaworotko, Bottom up synthesis that does not start at the bottom: quadruple covalent cross-linking of nanoscale faceted polyhedra, J. Am. Chem. Soc. 129 (2007) 10076-10077.

    18. [18]

      [18] X.Y. Zhao, D.D. Liang, S.X. Liu, et al., Two dawson-templated three-dimensional metal-organic frameworks based on oxalate-bridged binuclear cobalt(Ⅱ)/nickel(Ⅱ) SBUs and bpy linkers, Inorg. Chem. 47 (2008) 7133-7138.

    19. [19]

      [19] C.Y. Sun, S.X. Liu, D.D. Liang, et al., Two dawson-templated three-dimensional metal-organic frameworks based on oxalate-bridged binuclear cobalt(Ⅱ)/Nickel(Ⅱ) SBUs and bpy linkers, J. Am. Chem. Soc. 131 (2009) 1883-1888.

    20. [20]

      [20] X.L. Wang, H.L. Hu, A.X. Tian, H.Y. Lin, J. Li, Application of tetrazole-functionalized thioethers with different spacer lengths in the self-assembly of polyoxometalatebased hybrid compounds, Inorg. Chem. 49 (2010) 10299-10306.

    21. [21]

      [21] M.L. Wei, C. He, W.J. Hua, et al., A large protonated water cluster H+(H2O)27 in a 3D metal organic framework, J. Am. Chem. Soc. 128 (2006) 13318-13319.

    22. [22]

      [22] H.H. Song, B.Q. Ma, A well-resolved discrete dodecameric water cluster in a metal-organic complex, CrystEngComm 9 (2007) 625-627.

    23. [23]

      [23] L.Y. Wang, Y. Yang, K. Liu, B.L. Li, Y. Zhang, A new "opened-cube" (H2O)10 cluster and undulated water chain in porous metal organic frameworks, Cryst. Growth Des. 8 (2008) 3902-3904.

    24. [24]

      [24] L.B. Sun, Y. Li, Z.Q. Liang, J.H. Yu, R.R. Xu, Structures and properties of lanthanide metal-organic frameworks based on a 1,2,3-triazole-containing tetracarboxylate ligand, Dalton Trans. 41 (2012) 12790-12796.

    25. [25]

      [25] L. Infantes, J. Chisholm, S. Motherwell, Extended motifs from water and chemical functional groups in organic molecular crystals, CrystEngComm 5 (2003) 480-486 (and reference therein).

    26. [26]

      [26] M. Mascal, L. Infantes, J. Chisholm, Water oligomers in crystal hydrates-what's news and what isn't? Angew. Chem. Int. Ed. 45 (2006) 32-36 (and reference therein).

    27. [27]

      [27] Q. Yu, Y.F. Zeng, J.P. Zhao, et al., Three-dimensional porous metal organic frameworks exhibiting metamagnetic behaviors: synthesis, structure, adsorption, and magnetic properties, Inorg. Chem. 49 (2010) 4301-4306.

    28. [28]

      [28] Y. Wang, T. Okamura, W.Y. Sun, N. Ueyama, Large (H2O)56(OH)6 and (H2O)20 clusters inside a nanometer-sized M6L8 cage constructed by five-coordinated copper(Ⅲ) and flexible carboxamide-containing tripodal ligand, Cryst. Growth. Des. 8 (2008) 802-804.

    29. [29]

      [29] Q.R. Fang, G.S. Zhu, M. Xue, et al., Amine-templated assembly of metal-organic frameworks with attractive topologies, Cryst. Growth Des. 8 (2007) 319-329.

    30. [30]

      [30] Y.L. Liu, V.C.h. Kravtsov, M. Eddaoudi, Template-directed assembly of zeolite-like metal-organic frameworks (ZMOFs): a usf-ZMOF with an unprecedented zeolite topology, Angew. Chem. Int. Ed. 47 (2008) 8446-8449.

    31. [31]

      [31] J.H. He, J.H. Yu, Y.T. Zhang, Q.H. Pan, R.R. Xu, Synthesis, structure, and luminescent property of a heterometallic metal organic framework constructed from rodshaped secondary building blocks, Inorg. Chem. 44 (2005) 9279-9282.

    32. [32]

      [32] M. Dan, C.N.R. Rao, A building-up process in open-framework metal carboxylates that involves a progressive increase in dimensionality, Angew. Chem. Int. Ed. 45 (2006) 281-285.

    33. [33]

      [33] H. Okawa, A. Shigematsu, M. Sadakiyo, et al., Oxalate-bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M=Mn, Fe, Co; NH(prol)3+ = tri(3-hydroxypropyl) ammonium) exhibiting coexistent ferromagnetism and proton conduction, J. Am. Chem. Soc. 131 (2009) 13516-13522.

    34. [34]

      [34] Y.F. Zeng, X. Hu, J.P. Zhao, et al., Partial substitution of hydroxyl by azide: an unprecedented 2D azido-copper-hydroxyl compound with a [Cu24] macrocycle in the presence of [Cu(H2O)6]2+, Chem. Eur. J. 14 (2008) 7127-7130.

    35. [35]

      [35] R.Q. Zhong, R.Q. Zou, D.S. Pandey, T. Kiyobayashi, Q. Xu, A novel 3D microporous metal-organic framework of cadmium(Ⅱ) oxalate with diamondoid network, Inorg. Chem. Commun. 11 (2008) 951-953.

    36. [36]

      [36] S. Decurtins, H.W. Schmalle, P. Schneuwly, J. Ensling, P. Guetlich, A concept for the synthesis of 3-dimensional homo-and mimetallic oxalate-bridged networks[M2(ox)3]n. Structural, moessbauer, and magnetic studies in the field of molecular-based magnets, J. Am. Chem. Soc. 116 (1994) 9521-9528.

    37. [37]

      [37] Z.X. Chen, H.Y. Yang, M.L. Deng, et al., Metal complexes as templates: syntheses, structures, and luminescent properties of two zinc phosphonocarboxylates with ABW-zeolite topology, Dalton Trans. 41 (2012) 4079-4083.

    38. [38]

      [38] Q.H. Pan, J.Y. Li, Q. Chen, et al., |Co(en)3|1/3[In(ox)2]·3.5H2O: a zeolitic metal-organic framework templated by Co(en)3Cl3, Microporous Mesoporous Mater. 132 (2010) 453-457.

    39. [39]

      [39] Q.H. Pan, Q. Chen, W.C. Song, T.L. Hu, X.H. Bu, Template-directed synthesis of three new open-framework metal(Ⅱ) oxalates using Co(Ⅲ) complex as template, CrystEngComm 12 (2010) 4198-4204.

    40. [40]

      [40] Q.H. Pan, Q. Chen, Y.D. Han, T.L. Hu, X.H. Bu, Template-directed synthesis of a novel oxalate compound [Co(dien)2][NaCo2(C2O4)4] using Co(Ⅲ) complex as template, Chem. J. Chin. Univ. 32 (2011) 527-531.

    41. [41]

      [41] Z. Chang, A.S. Zhang, T.L. Hu, X.H. Bu, Zn coordination poylmers based on 2,3,6,7-anthracenetetracarboxylic acid: synthesis, structures, and luminescence properties, Cryst. Growth Des. 9 (2009) 4840-4846.

    42. [42]

      [42] Q.H. Pan, H. Ma, Z.X. Li, T.L. Hu, Anions behaviors for the dimensionalities of coordination polymers based on poly(imidazole) ligands, J. Mol. Struct. 1011 (2012) 134-139.

    43. [43]

      [43] Y. Wang, J.H. Yu, Y. Li, Z. Shi, R.R. Xu, Chirality transfer from guest chiral metal complexes to inorganic framework: the role of hydrogen bonding, Chem. Eur. J. 9 (2003) 5048-5055.

    44. [44]

      [44] Y. Wang, J.H. Yu, M. Guo, R.R. Xu, [{Zn2(HPO4)4}{Co(dien)2}]·H3O: a zinc phosphate with multidirectional intersecting helical channels, Angew. Chem. Int. Ed. 42 (2003) 4089-4092.

    45. [45]

      [45] Q.H. Pan, J.Y. Li, X.Y. Ren, et al., [Ni(1,2-PDA)3]2(HOCH2CH2CH2NH3)3(H3O)2[Ge7O14X3]3 (X = F, OH): a new 1D germanate with 12-ring hexagonal tubular channels, Chem. Mater. 20 (2008) 370-372.

    46. [46]

      [46] Q.H. Pan, J.Y. Li, K.E. Christensen, et al., A germanate built from a 68126 cavity cotemplated by an (H2O)16 cluster and 2-methylpiperazine, Angew. Chem. Int. Ed. 47 (2008) 7868-7871.

    47. [47]

      [47] Q.H. Pan, X.Y. Ren, Y. Xu, W.F. Yan, (C4N2H12)(NH4)2[(GeO2)3(GeO1.5F3)2]: a new layered germanate containing helical arrays of H-bond, Inorg. Chem. Commun. 14 (2011) 1842-1845.

    48. [48]

      [48] J.H. Yu, R.R. Xu, Insight into the construction of open-framework aluminophosphates, Chem. Soc. Rev. 35 (2006) 593-604.

    49. [49]

      [49] B. Wei, J.H. Yu, Z. Shi, S.L. Qiu, J.Y. Li, A new layered aluminophosphate[Al2P4O16][C6H22N4][C2H10N2] with 4.12-net porous sheets, J. Chem. Soc., Dalton Trans. 13 (2000) 1979-1980.

    50. [50]

      [50] Y.Y. Wang, Y. Li, L. Wang, et al., ACO-Zeotype iron aluminum phosphates with variable Al/Fe ratios controlled by F- ions, Inorg. Chem. 50 (2011) 1820-1825.

    51. [51]

      [51] H.Z. Xing, J.Y. Li, W.F. Yan, et al., Cotemplating ionothermal synthesis of a new open-framework aluminophosphate with unique Al/P ratio of 6/7, Chem. Mater. 20 (2008) 4179-4181.

    52. [52]

      [52] Bruker AXS, SAINT Software Reference Manual, Brucker Analytical X-ray instruments Inc., Madison, WI, 1998.

    53. [53]

      [53] G.M. Sheldrick,Ashort history ofSHELX, Acta Crystallogr.Sect.A64(2008)112-122.

    54. [54]

      [54] E.V. Alexandrov, V.A. Blatov, A.V. Kochetkov, D.M. Proserpio, Underlying nets in three-periodic coordination polymers: topology taxonomy and prediction from a computer-aided analysis of the Cambridge Structural Database, CrystEngComm 13 (2011) 3947-3958 (and reference therein).

  • 加载中
    1. [1]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    2. [2]

      Yuyang ZhouZiwang MaoJing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622

    3. [3]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    4. [4]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    5. [5]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    6. [6]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    7. [7]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    8. [8]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    9. [9]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    10. [10]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    11. [11]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    12. [12]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    13. [13]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    14. [14]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    15. [15]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    16. [16]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    17. [17]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    18. [18]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    19. [19]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    20. [20]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

Metrics
  • PDF Downloads(0)
  • Abstract views(671)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return