Citation: Subba Rao Devineni, Srinivasulu Doddaga, Rajasekhar Donka, Naga Raju Chamarthi. CeCl3·7H2O-SiO2: Catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant activities of α-diaminophosphonates[J]. Chinese Chemical Letters, ;2013, 24(8): 759-763.
-
CeCl3·7H2O supported on silica (CeCl3·7H2O-SiO2) is used as a heterogeneous, efficient and recyclable catalyst for a three component one-pot reaction of an amine, aldehydes and diethyl phosphite to synthesize a-diaminophosphonate derivatives under microwave irradiation exploiting neat reaction conditions. Ten α-diaminophosphonates (6a-j) of 4,4'-sulfonyldianiline (Dapsone) (3.) were synthesized and structural elucidation was confirmed by spectral data. Antifungal and antioxidant activities were evaluated include minimum inhibitory concentrations and IC50 values, respectively of the titled compounds. Compounds 6h, 6i exhibited promising antioxidant activity at lower IC50 values 53.7 μg/mL, 53.2 μg/mL, respectively as compared with standard IC50 value 51.6 μg/mL.
-
-
[1]
[1] M.A. Phillips, R. Fletterick, W.J. Rutter, Arginine 127 stabilizes the transition state in carboxypeptidase, J. Biol. Chem. 265 (1990) 20692-20698.
-
[2]
[2] F.R. Atherton, C.H. Hassal, R.W. Lambert, Synthesis and structure-activity relationship of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid, J. Med. Chem. 29 (1986) 29-41.
-
[3]
[3] L. Maier, Synthesis and properties of 1-amino-2-arylethylphosphonic acid and phosphinic acids as well as phosphine oxides, Phosphorus, Sulfur Silicon Relat. Elem. 53 (1990) 43-67.
-
[4]
[4] L. Maier, H. Spoerri, Organic phosphorus compounds 96.1 resolution of 1-amino-2-(4-fluorophenyl)ethylphosphonic acid as well as some di-and tripeptides, Phosphorus, Sulfur Silicon Relat. Elem. 61 (1991) 69-75.
-
[5]
[5] J.H. Meyer, P.A. Barlett, Macrocyclic inhibitors of penicillopepsin. 1: δesign, synthesis, and evaluation of an inhibitor bridged between P1 and P3, J. Am. Chem. Soc. 120 (1998) 4600-4609.
-
[6]
[6] D.J. Miller, S.M. Hammond, D. Anderluzzi, et al., Aminoalkylphosphinate inhibitors of d-Ala-d-Ala adding enzyme, J. Chem. Soc. Perkin Trans. 1 (1998) 131-142.
-
[7]
[7] M.C. Allen, W. Fuhrer, B. Tuck, et al., Renin inhibitors: synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond, J. Med. Chem. 32 (1989) 1652-1661.
-
[8]
[8] (a) J. Oleksyszyn, J.C. Powers, Irreversible inhibition of serine proteases by peptide derivatives of (a-aminoalkyl)phosphonate diphenyl esters, Biochemistry 30 (1991) 485-493;
-
[9]
(b) D. Green, G. Patel, S. Elgendy, et al., The facile synthesis of O,O-dialkyl 1-aminoalkanephosphonates, Tetrahedron Lett. 34 (1993) 6917-6920.
-
[10]
[9] (a) D.M. Mizrahi, T. Waner, Y. Segall, a-Amino acid derived bisphosphonates. Synthesis and anti-resorftive activity, Phosphorus, Sulfur Silicon Relat. Elem. 173 (2001) 1-25;
-
[11]
(b) J.R.Green,Anti-tumorpotential of bisphosphonates,Med. Klin.95(2000)23-28.
-
[12]
[10] S.C. Fields, Synthesis of natural products containing a C-P bond, Tetrahedron 55 (1999) 12237-12273.
-
[13]
[11] (a) J. Zon, Asymmetric addition of tris(trimethylsilyl) phosphite to chiral aldimines, Pol. J. Chem. 55 (1981) 643-646;
-
[14]
(b) S. Laschat, H.Kunz, Carbohydrates as chiraltemplates: stereoselective synthesis of (R)-and (S)-α-aminophosphonic acid derivatives, Synthesis 1 (1992) 90-95;
-
[15]
(c) J.S.Yadav, B.V.S.Reddy, K. Sarita Raj, et al., Zr4+-catalyzed efficientsynthesis ofaaminophosphonates, Synthesis 15 (2001) 2277-2280.[12] B.C. Ranu, A. Hajra, U. Jana, General procedure for the synthesis of a-aminophosphonates from aldehydes and ketones using indium(Ⅲ) chloride as a catalyst, Org. Lett. 1 (1999) 1141-1143.
-
[16]
[13] Z.P. Zhan, J.P. Li, Bismuth(Ⅲ) chloride-catalyzed three-component coupling: synthesis of a-aminophosphonates, Synth. Commun. 35 (2005) 2501-2504.
-
[17]
[14] Z. Rezaei, H. Firouzabadi, N. Iranpoor, et al., Design and one-pot synthesis of aaminophosphonates and bis(α-aminophosphonates) by iron(Ⅲ) chloride and cytotoxic activity, Eur. J. Med. Chem. 44 (2009) 4266-4275.
-
[18]
[15] F. Xu, Y.Q. Luo, J.T. Wu, Q. Shen, H. Chen, Facile one-pot synthesis of a-aminophosphonates using lanthanide chloride as catalyst, Heteroat. Chem. 17 (2006) 389-392.
-
[19]
[16] A. Manjula, B.V. Rao, P. Neelakantam, One-pot synthesis of a-aminophosphonates: an inexpensive approach, Synth. Commun. 33 (2003) 2963-2969.
-
[20]
[17] S. Ambica, S.C. Kumar, M.S. Taneja, et al., One-pot synthesis of a-aminophosphonates catalyzed by antimony trichloride adsorbed on alumina, Tetrahedron Lett. 49 (2008) 2208-2212.
-
[21]
[18] R. Ghosh, S. Maiti, A. Chakraborty, et al., In(OTf)3 catalysed simple one-pot synthesis of a-aminophosphonates, J. Mol. Catal. A: Chem. 210 (2004) 53-57.
-
[22]
[19] S. Sobhani, Z. Tashrifi, One-pot synthesis of primary 1-aminophosphonates: coupling reaction of carbonyl compounds, hexamethyldisilazane, and diethyl phosphite catalyzed by Al(OTf)3, Heteroat. Chem. 20 (2009) 109-115.
-
[23]
[20] S. Sobhani, Z. Tashrifi, Al(OTf)3 as an efficient catalyst for one-pot synthesis of primary diethyl 1-aminophosphonates under solvent-free conditions, Synth. Commun. 39 (2008) 120-131.
-
[24]
[21] N. Azizi, M.R. Saidi, Lithium perchlorate-catalyzed three-component coupling: a facile and general method for the synthesis of a-aminophosphonates under solvent-free conditions, Eur. J. Org. Chem. (23) (2003) 4630-4633.
-
[25]
[22] L. Shen, S. Cao, N.J. Liu, et al., Ytterbium(Ⅲ) perfluorooctanoate catalyzed one-pot, three-component synthesis of fully substituted pyrazoles under solvent-free conditions, Synlett 9 (2008) 1341-1344.
-
[26]
[23] A.J. Abbas, N. Mahshid, A.D. Mohammad, CeCl3·7H2O-catalyzed one-pot Kabachnik-Fields reaction: a green protocol for three-component synthesis of a-aminophosphonates, Heteroat. Chem. 21 (2010) 397-403.
-
[27]
[24] (a) A.W. Bauer, M.M. Kirby, J.C. Sherris, et al., Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol. 45 (1966) 493-496;
-
[28]
(b) National Committee for Clinical Laboratory Standards, Methods for Dilution, Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard M7-A5, 5th ed., NCCLS, Wayne, PA, 2000, p. 30;
-
[29]
(c) G.H. Bonjar Shahidi, Evaluation of antibacterial properties of iranian medicinal-plants against Micrococcus luteus, Serratia marcescens, Klebsiella pneumonia and Bordetella bronchoseptica, Asian J. Plant Sci. 3 (2004) 82-86.
-
[30]
[25] (a) M. Burits, F. Bucar, Antioxidant activity of Nigella sativa essential oil, Phytother. Res. 14 (2000) 323-328;
-
[31]
(b) M. Cuendet, K. Hostettmann, O. Potterat, Iridoid glucosides with free radical scavenging properties from Fagraea blumei, Helv. Chim. Acta 80 (1997) 1144-1152.
-
[32]
[26] (a) L.C. Green, D.A. Wagner, J. Glogowski, et al., Analysis of nitrate, nitrite, and
-
[33]
[15N] nitrate in biological fluids, Anal. Biochem. 126 (1982) 131-138;
-
[34]
(b) L. Marcocci, J.J. Maguire, M.T. DroyLefaix, et al., The nitric oxide scavenging property of Ginkgo biloba extract EGb 761, Biochem. Biophys. Res. Commun. 201 (1994) 748-755.
-
[35]
[27] R.J. Ruch, S.J. Cheng, J.E. Klaunig, Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea, Carcinogenesis 10 (1989) 1003-1008.
-
[1]
-
-
[1]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[2]
Guoping Yang , Zhoufu Lin , Xize Zhang , Jiawei Cao , Xuejiao Chen , Yufeng Liu , Xiaoling Lin , Ke Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274
-
[3]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[4]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[5]
Xiaomeng Hu , Jie Yu , Lijie Sun , Linfeng Zhang , Wei Zhou , Dongpeng Yan , Xinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466
-
[6]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[7]
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
-
[8]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[9]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[10]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[11]
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
-
[12]
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
-
[13]
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
-
[14]
Fangping Yang , Jin Shi , Yuansong Wei , Qing Gao , Jingrui Shen , Lichen Yin , Haoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746
-
[15]
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
-
[16]
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
-
[17]
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
-
[18]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[19]
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
-
[20]
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(641)
- HTML views(12)