Citation: Guo-Hua Zhang, Rui-Xia Hou, Dan-Xia Zhan, Yang Cong, Ya-Jun Cheng, Jun Fu. Fabrication of hollow porous PLGA microspheres for controlled protein release and promotion of cell compatibility[J]. Chinese Chemical Letters, ;2013, 24(8): 710-714. shu

Fabrication of hollow porous PLGA microspheres for controlled protein release and promotion of cell compatibility

  • Corresponding author: Jun Fu, 
  • Received Date: 28 March 2013
    Available Online: 3 May 2013

  • This letter reports on the fabrication of hollow, porous and non-porous poly(D,L-lactide-co-glycolide) (PLGA) microspheres (MSs) for the controlled release of protein and promotion of cell compatibility of tough hydrogels. PLGA MSs with different structures were prepared with modified double emulsion methods, using bovine serum albumin (BSA) as a porogen during emulsification. The release of the residual BSA from PLGA MSs was investigated as a function of the MS structure. The hollow PLGA MSs show a faster protein release than the porous MSs, while the non-porous MSs have the slowest protein release. Compositing the PLGA MSs with poly(vinyl alcohol) (PVA) hydrogels promoted chondrocyte adhesion and proliferation on the hydrogels.
  • 加载中
    1. [1]

      [1] V.P. Torchilin, A.N. Lukyanov, Peptide and protein drug delivery to and into tumors: challenges and solutions, Drug Discov. Today 8 (2003) 259-266.

    2. [2]

      [2] X.P. Wu, X.K. Li, Effect of charge at an amino acid of basic fibroblast growth factor on its mitogenic activity, Chin. Chem. Lett. 21 (2010) 468-471.

    3. [3]

      [3] A.J. DeFail, C.R. Chu, N. Izzo, et al., Controlled release of bioactive TGF-beta(1) from microspheres embedded within biodegradable hydrogels, Biomaterials 27 (2006) 1579-1585.

    4. [4]

      [4] T.W. King, C.W. Patrick, Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(DL-lactic-co-glycolic acid)/poly(-ethylene glycol) microspheres using a solid encapsulation/single emulsion/solvent extraction technique, J. Biomed. Mater. Res. 51 (2000) 383-390.

    5. [5]

      [5] L.P. Wang, L.M. Zhao, W.Z. Li, et al., Fabrication of triple-shelled hollow spheres with optical properties via RAFT polymerization, Chin. Chem. Lett. 21 (2010) 864-867.

    6. [6]

      [6] P. Yang, W.D. Hou, H.D. Qiu, et al., Preparation of quercetin imprinted core-shell organosilicate microspheres using surface imprinting technique, Chin. Chem. Lett. 23 (2012) 615-618.

    7. [7]

      [7] A. Jaklenec, A. Hinckfuss, B. Bilgen, et al., Sequential release of bioactive IGF-I and TGF-beta(1) from PLGA microsphere-based scaffolds, Biomaterials 29 (2008) 1518-1525.

    8. [8]

      [8] A. Jaklenec, E. Wan, M.E. Murray, et al., Novel scaffolds fabricated from proteinloaded microspheres for tissue engineering, Biomaterials 29 (2008) 185-192.

    9. [9]

      [9] M. van de Weert, W.E. Hennink, W. Jiskoot, Protein instability in poly(lactic-coglycolic acid) microparticles, Pharm. Res. 17 (2000) 1159-1167.

    10. [10]

      [10] J.M. Anderson, M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug Deliv. Rev. 28 (1997) 5-24.

    11. [11]

      [11] J. Panyama, V.L. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv. Drug Deliv. Rev. 55 (2003) 329-347.

    12. [12]

      [12] J.W. Lee, K.S. Kang, S.H. Lee, et al., Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres, Biomaterials 32 (2011) 744-752.

    13. [13]

      [13] S. Freiberg, X.X. Zhu, Polymer microspheres for controlled drug release, Int. J. Pharm. 282 (2004) 1-18.

    14. [14]

      [14] Y.Y. Yang, T.S. Chung, X.L. Bai, W.K. Chan, Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method, Chem. Eng. Sci. 55 (2000) 2223-2236.

    15. [15]

      [15] A.M. Tinsley-Bown, R. Fretwell, A.B. Dowsett, et al., Formulation of poly(D,L-lacticco-glycolic acid) microparticles for rapid plasmid DNA delivery, J. Control. Release 66 (2000) 229-241.

    16. [16]

      [16] K.L. Spiller, S.J. Laurencin, D. Charlton, S.A. Maher, A.M. Lowman, Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties, Acta Biomater. 4 (2008) 17-25.

    17. [17]

      [17] K.L. Spiller, S.A. Maher, A.M. Lowman, Hydrogels for the repair of articular cartilage defects, Tissue Eng. B: Rev. 17 (2011) 281-299.

    18. [18]

      [18] H. Kobayashi, M. Kato, T. Taguchi, et al., Collagen immobilized PVA hydrogelhydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea, Mater. Sci. Eng. C 24 (2004) 729-735.

    19. [19]

      [19] J.E. Lee, K.E. Kim, I.C. Kwon, et al., Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/ glycosaminoglycan scaffold, Biomaterials 25 (2004) 4163-4173.

    20. [20]

      [20] J. Lee, Y.J. Oh, S.K. Lee, et al., Facile control of porous structures of polymer microspheres using an osmotic agent for pulmonary delivery, J. Control. Release 146 (2010) 61-67.

    21. [21]

      [21] S. Damodaran, Protein stabilization of emulsions and foams, J. Food Sci. 70 (2005) R54-R66.

    22. [22]

      [22] E. Dickinson, Milk protein interfacial layers and the relationship to emulsion, Colloids Surf. B: Biointerfaces 20 (2001) 197-210.

    23. [23]

      [23] M.L. Ye, S.W. Kim, K.N. Park, Issue in long-term protein delivery using biodegradable microparticles, J. Control. Release 146 (2010) 241-260.

    24. [24]

      [24] Y.Y. Yang, T.S. Chung, N.P. Ng, Morphology, drug distribution, and in vitro release profiles of bildegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method, Biomaterials 22 (2001) 231-241.

    25. [25]

      [25] R. Bos, H.C. van der Mei, H.J. Busscher, Physico-chemistry of initial microbial adhesive interactions -its mechanisms and methods for study, FEMS Microbiol. Rev. 23 (1999) 179-230.

  • 加载中
    1. [1]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    2. [2]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    3. [3]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    4. [4]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    5. [5]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    6. [6]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    7. [7]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    8. [8]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    9. [9]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    10. [10]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    11. [11]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    12. [12]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    13. [13]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    14. [14]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    15. [15]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    16. [16]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    17. [17]

      Yu YanJiawei SongDongdong LiuZihan LiuJialing ChengZhiyang ChenYanfang YangWeizhe JiangHongliang WangJun YeYuling Liu . Simple and versatile in situ thermo-sensitive hydrogel for rectal administration of SZ-A to alleviate inflammation and repair mucosal barrier in ulcerative colitis. Chinese Chemical Letters, 2024, 35(6): 109736-. doi: 10.1016/j.cclet.2024.109736

    18. [18]

      Hui LiuXi XiangJian-Bo HuangBi-Hui ZhuLi-Yun WangYuan-Jiao TangFang-Xue DuLing LiFeng YanLang MaLi Qiu . Corrigendum to "Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis" [Chinese Chemical Letters 32 (2021) 1759-1764]. Chinese Chemical Letters, 2025, 36(2): 110562-. doi: 10.1016/j.cclet.2024.110562

    19. [19]

      Xueyan ZhangJicong ChenSongren HanShiyan DongHuan ZhangYuhong ManJie YangYe BiLesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668

    20. [20]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

Metrics
  • PDF Downloads(0)
  • Abstract views(681)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return