Citation: Guo-Hua Zhang, Rui-Xia Hou, Dan-Xia Zhan, Yang Cong, Ya-Jun Cheng, Jun Fu. Fabrication of hollow porous PLGA microspheres for controlled protein release and promotion of cell compatibility[J]. Chinese Chemical Letters, ;2013, 24(8): 710-714.
-
This letter reports on the fabrication of hollow, porous and non-porous poly(D,L-lactide-co-glycolide) (PLGA) microspheres (MSs) for the controlled release of protein and promotion of cell compatibility of tough hydrogels. PLGA MSs with different structures were prepared with modified double emulsion methods, using bovine serum albumin (BSA) as a porogen during emulsification. The release of the residual BSA from PLGA MSs was investigated as a function of the MS structure. The hollow PLGA MSs show a faster protein release than the porous MSs, while the non-porous MSs have the slowest protein release. Compositing the PLGA MSs with poly(vinyl alcohol) (PVA) hydrogels promoted chondrocyte adhesion and proliferation on the hydrogels.
-
Keywords:
- PLGA microspheres,
- Controlled release,
- Hydrogel,
- Cell compatibility
-
-
[1]
[1] V.P. Torchilin, A.N. Lukyanov, Peptide and protein drug delivery to and into tumors: challenges and solutions, Drug Discov. Today 8 (2003) 259-266.
-
[2]
[2] X.P. Wu, X.K. Li, Effect of charge at an amino acid of basic fibroblast growth factor on its mitogenic activity, Chin. Chem. Lett. 21 (2010) 468-471.
-
[3]
[3] A.J. DeFail, C.R. Chu, N. Izzo, et al., Controlled release of bioactive TGF-beta(1) from microspheres embedded within biodegradable hydrogels, Biomaterials 27 (2006) 1579-1585.
-
[4]
[4] T.W. King, C.W. Patrick, Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(DL-lactic-co-glycolic acid)/poly(-ethylene glycol) microspheres using a solid encapsulation/single emulsion/solvent extraction technique, J. Biomed. Mater. Res. 51 (2000) 383-390.
-
[5]
[5] L.P. Wang, L.M. Zhao, W.Z. Li, et al., Fabrication of triple-shelled hollow spheres with optical properties via RAFT polymerization, Chin. Chem. Lett. 21 (2010) 864-867.
-
[6]
[6] P. Yang, W.D. Hou, H.D. Qiu, et al., Preparation of quercetin imprinted core-shell organosilicate microspheres using surface imprinting technique, Chin. Chem. Lett. 23 (2012) 615-618.
-
[7]
[7] A. Jaklenec, A. Hinckfuss, B. Bilgen, et al., Sequential release of bioactive IGF-I and TGF-beta(1) from PLGA microsphere-based scaffolds, Biomaterials 29 (2008) 1518-1525.
-
[8]
[8] A. Jaklenec, E. Wan, M.E. Murray, et al., Novel scaffolds fabricated from proteinloaded microspheres for tissue engineering, Biomaterials 29 (2008) 185-192.
-
[9]
[9] M. van de Weert, W.E. Hennink, W. Jiskoot, Protein instability in poly(lactic-coglycolic acid) microparticles, Pharm. Res. 17 (2000) 1159-1167.
-
[10]
[10] J.M. Anderson, M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug Deliv. Rev. 28 (1997) 5-24.
-
[11]
[11] J. Panyama, V.L. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv. Drug Deliv. Rev. 55 (2003) 329-347.
-
[12]
[12] J.W. Lee, K.S. Kang, S.H. Lee, et al., Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres, Biomaterials 32 (2011) 744-752.
-
[13]
[13] S. Freiberg, X.X. Zhu, Polymer microspheres for controlled drug release, Int. J. Pharm. 282 (2004) 1-18.
-
[14]
[14] Y.Y. Yang, T.S. Chung, X.L. Bai, W.K. Chan, Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method, Chem. Eng. Sci. 55 (2000) 2223-2236.
-
[15]
[15] A.M. Tinsley-Bown, R. Fretwell, A.B. Dowsett, et al., Formulation of poly(D,L-lacticco-glycolic acid) microparticles for rapid plasmid DNA delivery, J. Control. Release 66 (2000) 229-241.
-
[16]
[16] K.L. Spiller, S.J. Laurencin, D. Charlton, S.A. Maher, A.M. Lowman, Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties, Acta Biomater. 4 (2008) 17-25.
-
[17]
[17] K.L. Spiller, S.A. Maher, A.M. Lowman, Hydrogels for the repair of articular cartilage defects, Tissue Eng. B: Rev. 17 (2011) 281-299.
-
[18]
[18] H. Kobayashi, M. Kato, T. Taguchi, et al., Collagen immobilized PVA hydrogelhydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea, Mater. Sci. Eng. C 24 (2004) 729-735.
-
[19]
[19] J.E. Lee, K.E. Kim, I.C. Kwon, et al., Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/ glycosaminoglycan scaffold, Biomaterials 25 (2004) 4163-4173.
-
[20]
[20] J. Lee, Y.J. Oh, S.K. Lee, et al., Facile control of porous structures of polymer microspheres using an osmotic agent for pulmonary delivery, J. Control. Release 146 (2010) 61-67.
-
[21]
[21] S. Damodaran, Protein stabilization of emulsions and foams, J. Food Sci. 70 (2005) R54-R66.
-
[22]
[22] E. Dickinson, Milk protein interfacial layers and the relationship to emulsion, Colloids Surf. B: Biointerfaces 20 (2001) 197-210.
-
[23]
[23] M.L. Ye, S.W. Kim, K.N. Park, Issue in long-term protein delivery using biodegradable microparticles, J. Control. Release 146 (2010) 241-260.
-
[24]
[24] Y.Y. Yang, T.S. Chung, N.P. Ng, Morphology, drug distribution, and in vitro release profiles of bildegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method, Biomaterials 22 (2001) 231-241.
-
[25]
[25] R. Bos, H.C. van der Mei, H.J. Busscher, Physico-chemistry of initial microbial adhesive interactions -its mechanisms and methods for study, FEMS Microbiol. Rev. 23 (1999) 179-230.
-
[1]
-
-
[1]
Jiaxu Wang , Jinxie Zhang , Xiuping Wang , Jingying Wang , Lina Chen , Jiahui Cao , Wei Cao , Siyu Liang , Ping Luan , Ke Zheng , Xiao-Kun Ouyang , Li Gao , Xiaowen Ou , Fan Zhang , Meitong Ou , Lin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697
-
[2]
Ningyue Xu , Jun Wang , Lei Liu , Changyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225
-
[3]
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
-
[4]
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
-
[5]
Yang Xu , Le Ma , Yang Wang , Chunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766
-
[6]
Zheyi Li , Xiaoyang Liang , Zitong Qiu , Zimeng Liu , Siyu Wang , Yue Zhou , Nan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592
-
[7]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[8]
Qingyang Cui , Feng Yu , Zirun Wang , Bangkun Jin , Wanqun Hu , Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046
-
[9]
Xiaoliu Liang , Chunliu Huang , Hui Liu , Hu Chen , Jiabao Shou , Hongwei Cheng , Gang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442
-
[10]
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
-
[11]
Jianye Kang , Xinyu Yang , Xuhao Yang , Jiahui Sun , Yuhang Liu , Shutao Wang , Wenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297
-
[12]
Xin Li , Xuan Ding , Junkun Zhou , Hui Shi , Zhenxi Dai , Jiayi Liu , Yongcun Ma , Penghui Shao , Liming Yang , Xubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158
-
[13]
Xinyue Lan , Junguang Liang , Churan Wen , Xiaolong Quan , Huimin Lin , Qinqin Xu , Peixian Chen , Guangyu Yao , Dan Zhou , Meng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616
-
[14]
Zhibin Ren , Shan Li , Xiaoying Liu , Guanghao Lv , Lei Chen , Jingli Wang , Xingyi Li , Jiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629
-
[15]
Haijun Shen , Yi Qiao , Chun Zhang , Yane Ma , Jialing Chen , Yingying Cao , Wenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283
-
[16]
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
-
[17]
Yu Yan , Jiawei Song , Dongdong Liu , Zihan Liu , Jialing Cheng , Zhiyang Chen , Yanfang Yang , Weizhe Jiang , Hongliang Wang , Jun Ye , Yuling Liu . Simple and versatile in situ thermo-sensitive hydrogel for rectal administration of SZ-A to alleviate inflammation and repair mucosal barrier in ulcerative colitis. Chinese Chemical Letters, 2024, 35(6): 109736-. doi: 10.1016/j.cclet.2024.109736
-
[18]
Hui Liu , Xi Xiang , Jian-Bo Huang , Bi-Hui Zhu , Li-Yun Wang , Yuan-Jiao Tang , Fang-Xue Du , Ling Li , Feng Yan , Lang Ma , Li Qiu . Corrigendum to "Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis" [Chinese Chemical Letters 32 (2021) 1759-1764]. Chinese Chemical Letters, 2025, 36(2): 110562-. doi: 10.1016/j.cclet.2024.110562
-
[19]
Xueyan Zhang , Jicong Chen , Songren Han , Shiyan Dong , Huan Zhang , Yuhong Man , Jie Yang , Ye Bi , Lesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668
-
[20]
Zhefei Hu , Jingwen Liao , Jiawen Zhou , Lulu Zhao , Yanjuan Liu , Yuefei Zhang , Wei Chen , Sheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(681)
- HTML views(9)