Citation: Qi Lin, Pei Chen, Yong-Peng Fu, You-Ming Zhang, Bing-Bing Shi, Peng Zhang, Tai-Bao Wei. A green synthesis of a simple chemosensor that could instantly detect cyanide with high selectivity in aqueous solution[J]. Chinese Chemical Letters, ;2013, 24(8): 699-702. shu

A green synthesis of a simple chemosensor that could instantly detect cyanide with high selectivity in aqueous solution

  • Corresponding author: Tai-Bao Wei, 
  • Received Date: 2 March 2013
    Available Online: 19 April 2013

  • A novel and simple cyanide chemosensor 2-(naphthalen-1-ylmethylene)malononitrile (L) was designed and synthesized via a green chemistry method in water without using any catalyst. The chemosensor showed an excellent sensitivity and selectivity for CN- in aqueous solution. The detection limit could be as low as 1.6×10-7 mol/L (0.16 μmol/L), which is far lower than the WHO guideline of 1.9 μmol/L cyanide for drink water.
  • 加载中
    1. [1]

      [1] M.A. Holland, L.M. Kozlowski, Clinical features and management of cyanide poisoning, Clin. Pharm. 5 (1986) 737-741.

    2. [2]

      [2] R. Koenig, Wildlife deaths are a grim wake-up call in Eastern Europe, Science 10 (2000) 1737-1738.

    3. [3]

      [3] F.J. Baud, Cyanide: critical issues in diagnosis and treatment, Hum. Exp. Toxicol. 26 (2007) 191-201.

    4. [4]

      [4] Guidelines, Guidelines for Drinking-Water Quality, World Health Organization, Geneva, 1996.

    5. [5]

      [5] C. Young, L. Tidwell, C. Anderson, Cyanide: Social, Industrial, and Economic Aspects, The Minerals, Metals & Materials Society, Warrendale, 2001.

    6. [6]

      [6] L.S. Bark, H.G. Higson, A review of the methods available for the detection and determination of small amounts of cyanide, Analyst 88 (1963) 751-760.

    7. [7]

      [7] D.E. Barnes, P.J. Wright, S.M. Graham, E.A. Jones-Watson, Techniques for the determination of cyanide in a process environment: a review, Geostand. Geoanal. Res. 24 (2000) 183-195.

    8. [8]

      [8] Z. Xu, X. Chen, H.N. Kim, J. Yoon, Sensors for the optical detection of cyanide ion, Chem. Soc. Rev. 39 (2010) 127-137.

    9. [9]

      [9] J.J. Du, M.M. Hu, J.L. Fan, X.J. Peng, Fluorescent chemodosimeters using "mild" chemical events for the detection of small anions and cations in biological and environmental media, Chem. Soc. Rev. 41 (2012) 4511-4535.

    10. [10]

      [10] Y.M. Yang, Q. Zhao, W. Feng, F.Y. Li, Luminescent chemodosimeters for bioimaging, Chem. Rev. 113 (2013) 192-270.

    11. [11]

      [11] S. Chattaraj, A.K. Das, Indirect determination of free cyanide in industrial waste effluent by atomic absorption spectrometry, Analyst 116 (1991) 739-741.

    12. [12]

      [12] S.C. Yen, C.T. Wang, J.S. Wang, The indirect electrochemical destruction of dilute cyanide solutions by packed-bed electrodes, Chem. Eng. Commun. 109 (1991) 167-180.

    13. [13]

      [13] J.L. Liu, Y. Liu, Q. Liu, et al., Iridium(Ⅲ) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions, J. Am. Chem. Soc. 133 (2011) 15276-15279.

    14. [14]

      [14] L.M. Yao, J. Zhou, J.L. Liu, W. Feng, F.Y. Li, Iridium-complex-modified upconversion nanophosphors for effective LRET detection of cyanide anions in pure water, Adv. Funct. Mater. 22 (2011) 2667-2672.

    15. [15]

      [15] N. Kumari, S. Jha, S. Bhattacharya, A chemodosimetric probe based on a conjugated oxidized bis-indolyl system for selective naked-eye sensing of cyanide ions in water, Chem. Asian J. 7 (2012) 2805-2812.

    16. [16]

      [16] U.G. Reddy, P. Das, S. Saha, A CN specific turn-on phosphorescent probe with probable application for enzymatic assay and as an imaging reagent, Chem. Commun. 49 (2013) 255-257.

    17. [17]

      [17] J. Jo, D. Lee, Turn-on fluorescence detection of cyanide in water: activation of latent fluorophores through remote hydrogen bonds that mimic peptide b-turn motif, J. Am. Chem. Soc. 131 (2009) 16283-16291.

    18. [18]

      [18] H.J. Mo, Y. Shen, B.H. Ye, Selective recognition of cyanide anion via formation of multipoint NH and phenyl CH hydrogen bonding with acyclic ruthenium bipyridine lmidazole receptors in water, Inorg. Chem. 51 (2012) 7174-7184.

    19. [19]

      [19] Z.P. Liu, X.Q. Wang, Z.H. Yang, W.J. He, Rational design of a dual chemosensor for cyanide anion sensing based on dicyanovinyl-substituted benzofurazan, J. Org. Chem. 76 (2011) 10286-10290.

    20. [20]

      [20] L. Yuan, W. Lin, Y. Yang, J. Song, J. Wang, Rational design of a highly reactive ratiometric fluorescent probe for cyanide, Org. Lett. 13 (2011) 3730-3733.

    21. [21]

      [21] Q. Lin, Y.P. Fu, P. Chen, T.B. Wei, Y.M. Zhang, Colorimetric chemosensors designed to provide high sensitivity for Hg2+ in aqueous solutions, Dyes Pigm. 96 (2013) 1-6.

    22. [22]

      [22] Y.M. Zhang, Q. Lin, T.B. Wei, Y. Li, X.P. Qin, A novel smart organogel which could allow a two channel anion response by proton controlled reversible sol-gel transition and color changes, Chem. Commun. 40 (2009) 6074-6076.

    23. [23]

      [23] Y.M. Zhang, Q. Lin, T.B. Wei, D.D. Wang, Simple colorimetric sensors with high selectivity for acetate and chloride in aqueous solution, Sensors Actuators B 137 (2009) 447-455.

    24. [24]

      [24] F. Bigi, M.L. Conforti, R. Maggi, A. Piccinno, G. Sartori, Clean synthesis in water: uncatalysed preparation of ylidenemalononitriles, Green Chem. 2 (2000) 101-103.

    25. [25]

      [25] Analytical Methods Committee, Recommendations for the definition, estimation and use of the detection limit, Analyst 112 (1987) 199-204.

  • 加载中
    1. [1]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    2. [2]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    7. [7]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    8. [8]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    9. [9]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    10. [10]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    11. [11]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    12. [12]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    13. [13]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    14. [14]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    15. [15]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    16. [16]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    17. [17]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    18. [18]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    19. [19]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    20. [20]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

Metrics
  • PDF Downloads(0)
  • Abstract views(733)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return