Citation: Shuang Zhang, Ji-Ming Yan, An-Jun Qin, Jing-Zhi Sun, Ben-Zhong Tang. The specific detection of Cu(Ⅱ) using an AIE-active alanine ester[J]. Chinese Chemical Letters, ;2013, 24(8): 668-672. shu

The specific detection of Cu(Ⅱ) using an AIE-active alanine ester

  • Corresponding author: Jing-Zhi Sun,  Ben-Zhong Tang, 
  • Received Date: 25 February 2013
    Available Online: 17 April 2013

  • Cu(Ⅱ) detection is important because it plays crucial role in several biological processes and ecological systems. Fluorescent techniques have attracted more and more attention in Cu(Ⅱ) detection. In this report, we contribute a novel strategy to use fluorescence spectroscopy for Cu(Ⅱ) specific detection. The specificity relies on the fact that, of the many metal cations, only Cu(Ⅱ) can catalyze the hydrolyzation of a-amino acid ester. The novelty originates from the unique aggregation-induced emission (AIE) property of the fluorescent label. We designed a model a-amino acid ester (TPE-Ala) constructed with alanine and tetraphenylethene-functionalizedmethanol (TPE-methanol). In comparison with the precursor TPE-Ala, TPE-methanol has lower solubility and is easy to form aggregates in water, thereby displaying a higher fluorescent response. Thus, the Cu(Ⅱ) catalyzed hydrolyzation can be monitored by recording the fluorescence enhancement and fluorescent detection Cu(Ⅱ) is rationally achieved.
  • 加载中
    1. [1]

      [1] M.C. Linder, M. Hazegh-Azam, Copper biochemistry and molecular biology, Am. J. Clin. Nutr. 63 (1996) 797S-811S.

    2. [2]

      [2] C. Vulpe, B. Levinson, S. Whitney, et al., Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase, J. Gitschier Nat. Genet. 3 (1993) 7-13.

    3. [3]

      [3] D.R. Brown, H. Kozlowski, Biological inorganic and bioinorganic chemistry of neurodegeneration based on Prion and Alzheimer diseases, Dalton. Trans. (2004) 1907-1917.

    4. [4]

      [4] K.J. Barnham, C.L. Masters, A.I. Bush, Neurodegenerative diseases and oxidative stress, Nat. Rev. Drug Discov. 3 (2004) 205-214.

    5. [5]

      [5] L.I. Bruijn, T.M. Miller, D.W. Cleveland, Unraveling the mechanisms involved in motor neuron degeneration in ALS, Annu. Rev. Neurosci. 27 (2004) 723-749.

    6. [6]

      [6] S. Kaur, S. Kumar, Photoactive chemosensors: a unique case of lluorescence enhancement with Cu(Ⅱ), Chem. Commun. (2002) 2840-2841.

    7. [7]

      [7] X. Qi, E.J. Jun, L. Xu, et al., New BODIPY derivatives as off-on fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+, J. Org. Chem. 71 (2006) 2881-2884.

    8. [8]

      [8] X. Zhang, Y. Shiraishi, T. Hirai, Cu (Ⅱ)-selective green fluorescence of a rhodaminediacetic acid conjugate, Org. Lett. 9 (2007) 5039-5042.

    9. [9]

      [9] M. Yu, M. Shi, Z. Chen, et al., Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in live cell imaging, Chem. Eur. J. 14 (2008) 6892-6900.

    10. [10]

      [10] Y. Zhao, X.B. Zhang, Z.X. Han, et al., Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and lving cells, Anal. Chem. 81 (2009) 7022-7030.

    11. [11]

      [11] K.L. Ciesienski, L.M. Hyman, S. Derisavifard, K.J. Franz, Toward the detection of cellular copper(Ⅱ) by a light-activated fluorescence increase, Inorg. Chem. 49 (2010) 6808-6810.

    12. [12]

      [12] F.T. Lv, X.L. Feng, H.W. Tang, et al., Development of film sensors based on conjugated polymers for copper (Ⅱ) ion detection, Adv. Funct. Mater. 21 (2011) 845-850.

    13. [13]

      [13] Y. Zhou, Y.W. Yao, J.Y. Li, et al., Nitroxyl induced fluorescence enhancement via reduction of a copper(Ⅱ) coumarin-ester complex: its application for bioimaging in vivo, Sens. Actuator B -Chem. 174 (2012) 414-420.

    14. [14]

      [14] C.W. Yu, T. Wang, K. Xu, et al., Characterization of a highly Cu2+-selective fluorescent probe derived from rhodamine B, Dyes Pigments 96 (2013) 38-44.

    15. [15]

      [15] J. Luo, Z. Xie, J.W.Y. Lam, et al., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun. (2001) 1740-1741.

    16. [16]

      [16] Y. Hong, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission, Chem. Soc. Rev. 40 (2011) 536-5388.

    17. [17]

      [17] S. Zhang, A. Qin, J. Sun, B.Z. Tang, Mechanism study of aggregation-induced emission, Prog. Chem. 23 (2011) 623-636.

    18. [18]

      [18] J. Yan, J. Sun, A. Qin, B.Z. Tang, Application of AIE-active molecules in biosensing, Chin. Sci. Bull. 55 (2010) 1206-1213.

    19. [19]

      [19] Y. Hong, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications, Chem. Commun. (2009) 4332-4353.

    20. [20]

      [20] J. Chen, C.C.W. Law, J.W.Y. Lam, et al., Synthesis, light emission, nanoaggregation and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles, Chem. Mater. 15 (2003) 1535-1546.

    21. [21]

      [21] J. Mei, Y. Wang, J.Q. Tong, et al., Discriminatory detection of cysteine and homocysteine based on dialdehyde-functionalized aggregation-induced emission fluorophores, Chem. Eur. J. 19 (2013) 613-620.

    22. [22]

      [22] J. Mei, J.Q. Tong, J. Wang, et al., Discriminative fluorescence detection of cysteine, homocysteine and glutathione via reaction-dependent aggregation of fluorophore-analyte adducts, J. Mater. Chem. 22 (2012) 17063-17070.

    23. [23]

      [23] Z. Yang, N. Zhao, Y.M. Sun, et al., Highly selective red-and green-emitting twophoton fluorescent probes for cysteine detection and their bio-imaging in living cells, Chem. Commun. 48 (2012) 3442-3444.

    24. [24]

      [24] M.L. Bender, B.W. Turnquest, The kinetics and oxygen exchange of the cupric ioncatalyzed hydrolysis of a-amino esters, Org. Biol. Chem. 79 (1957) 1889-1893.

    25. [25]

      [25] M.M. Shoukry, E.M. Khairy, R.G. Khalil, Binary and ternary complexes involving copper (Ⅱ), glycyl-DL-leucine and amino acids or amino acid esters: hydrolysis and equilibrium studies, Transit. Met. Chem. 22 (1997) 465-470.

    26. [26]

      [26] J. Zhao, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission of tetraarylethene luminogens, Curr. Org. Chem. 14 (2010) 2109-2131.

    27. [27]

      [27] X. Chen, X.Y. Shen, E. Guan, et al., A pyridinyl-functionalized tetraphenylethylene fluorogen for specific sensing of trivalent cations, Chem. Commun. 49 (2013) 1503-1505.

  • 加载中
    1. [1]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    2. [2]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    3. [3]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    4. [4]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    5. [5]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    6. [6]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    7. [7]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    10. [10]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    11. [11]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    12. [12]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    15. [15]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    16. [16]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    17. [17]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    18. [18]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    19. [19]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    20. [20]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

Metrics
  • PDF Downloads(0)
  • Abstract views(700)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return