Citation: Li-Na Jin, Qing Liu, Wei-Yin Sun. Room temperature solution-phase synthesis of flower-like nanostructures of [Ni3(BTC)2·12H2O] and their conversion to porous NiO[J]. Chinese Chemical Letters, ;2013, 24(8): 663-667. shu

Room temperature solution-phase synthesis of flower-like nanostructures of [Ni3(BTC)2·12H2O] and their conversion to porous NiO

  • Corresponding author: Wei-Yin Sun, 
  • Received Date: 9 April 2013
    Available Online: 22 April 2013

  • Hierarchical flower-like architectures of [Ni3(BTC)2·12H2O] (BTC3- = benzene-1,3,5-tricarboxylate) were successfully prepared by a simple solution-phase method under mild conditions without any template or surfactant. Phase-pure porous NiO nanocrystals were obtained by annealing the Ni-BTC complex without significant alteration in morphology. The product was characterized by X-ray diffraction techniques, field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The catalytic effect of the NiO product was investigated on the thermal decomposition of ammonium perchlorate (AP) and it was found that the annealed NiO product has higher catalytic activity than the commercial NiO.
  • 加载中
    1. [1]

      [1] T.K. Maji, R. Matsuda, S. Kitagawa, A flexible interpenetrating coordination framework with a bimodal porous functionality, Nat. Mater. 6 (2007) 142-148.

    2. [2]

      [2] L.J. Murray, M. Dincâ, J.R. Long, Hydrogen storage in metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1294-1314.

    3. [3]

      [3] P. Wang, T. Okamura, H.P. Zhou, W.Y. Sun, Y.P. Tian, Metal complex with terpyrindine derivative ligand as highly selective colorimetric sensor for iron(Ⅲ), Chin. Chem. Lett. 24 (2013) 20-22.

    4. [4]

      [4] S.S. Chen, M. Chen, S. Takamizawa, et al., Porous cobalt(Ⅱ)-imidazolate supramolecular isomeric frameworks with selective gas sorption property, Chem. Commun. 47 (2011) 4902-4904.

    5. [5]

      [5] S.M. Seyedi, R. Sandaroos, G.H. Zohuri, Novel cobalt(Ⅱ) complexes of amino acids-Schiff bases catalyzed aerobic oxidation of various alcohols to ketons and aldehyde, Chin. Chem. Lett. 21 (2010) 1303-1306.

    6. [6]

      [6] Y. Zhao, X. Zhou, T. Okamura, et al., Silver supramolecule catalyzed multicomponent reactions under mild conditions, Dalton Trans. 41 (2012) 5889-5896.

    7. [7]

      [7] M.Y. Masoomi, A. Morsali, Applications of metal-organic coordination polymers as precursors for preparation of nano-materials, Coord. Chem. Rev. 256 (2012) 2921-2943.

    8. [8]

      [8] S. Jung, W. Cho, H.J. Lee, M. Oh, Self-template-directed formation of coordinationpolymer hexagonal tubes and rings, and their calcination to ZnO rings, Angew. Chem. Int. Ed. 48 (2009) 1459-1462.

    9. [9]

      [9] W. Cho, S. Park, M. Oh, Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods, Chem. Commun. 47 (2011) 4138-4140.

    10. [10]

      [10] L.N. Jin, Q. Liu, W.Y. Sun, Shape-controlled synthesis of Co3O4 nanostructures derived from coordination polymer precursors and their application to the thermal decomposition of ammonium perchlorate, CrystEngComm-14 (2012) 7721-7726.

    11. [11]

      [11] H.Y. Shi, B. Deng, S.L. Zhong, L. Wang, A.W. Xu, Synthesis of zinc oxide nanoparticles with strong, tunable and stable visible light emission by solid-state transformation of Zn(Ⅱ)-organic coordination polymers, J. Mater. Chem. 21 (2011) 12309-12315.

    12. [12]

      [12] D. Wang, W. Ni, H. Pang, et al., Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors, Electrochim. Acta 55 (2010) 6830-6835.

    13. [13]

      [13] H. Pang, F. Gao, Q. Chen, R. Liu, Q. Lu, Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis, Dalton Trans. 41 (2012) 5862-5868.

    14. [14]

      [14] T.W. Kim, S.J. Hwang, S.H. Jhung, et al., Bifunctional heterogeneous catalysts for selective epoxidation and visible light driven photolysis: nickel oxide-containing porous nanocomposite, Adv. Mater. 20 (2008) 539-542.

    15. [15]

      [15] G. Li, X. Wang, H. Ding, T. Zhang, A facile synthesis method for Ni(OH)2 ultrathin nanosheets and their conversion to porous NiO nanosheets used for formaldehyde sensing, RSC Adv. 2 (2012) 13018-13023.

    16. [16]

      [16] W. Wen, J.M. Wu, L.L. Lai, G.P. Ling, M.H. Cao, Hydrothermal synthesis of needlelike hyperbranched Ni(SO4)0.3(OH)1.4 bundles and their morphology-retentive decompositions to NiO for lithiumstorage, CrystEngComm14 (2012) 6565-6572.

    17. [17]

      [17] L. Liu, Y. Li, S. Yuan, et al., Nanosheet-based NiO microspheres: controlled solvothermal synthesis and lithium storage performances, J. Phys. Chem. C 114 (2010) 251-255.

    18. [18]

      [18] G. Zhang, L. Yu, H.E. Hoster, X.W. Lou, Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance, Nanoscale 5 (2013) 877-881.

    19. [19]

      [19] P. Tian, J. Ye, G. Ning, et al., NiO hierarchical structure: template-engaged synthesis and adsorption property, RSC Adv. 2 (2012) 10217-10221.

    20. [20]

      [20] W. Zhou, M. Yao, L. Guo, et al., Hydrazine-linked convergent self-assembly of sophisticated concave polyhedrons of b-Ni(OH)2 and NiO from nanoplate building blocks, J. Am. Chem. Soc. 131 (2009) 2959-2964.

    21. [21]

      [21] X. Wang, L. Yu, P. Hu, F. Yuan, Synthesis of single-crystalline hollow octahedral NiO, Cryst. Growth Des. 7 (2007) 2415-2418.

    22. [22]

      [22] D.P. Chen, X.L. Wang, Y. Du, et al., Growth mechanism and magnetic properties of highly crystalline NiO nanocubes and nanorods fabricated by evaporation, Cryst. Growth Des. 12 (2012) 2842-2849.

    23. [23]

      [23] G. Tong, Q. Hu, W. Wu, et al., Submicrometer-sized NiO octahedra: facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties, J. Mater. Chem. 22 (2012) 17494-17504.

    24. [24]

      [24] T. Zhu, J.S. Chen, X.W. Lou, Highly efficient removal of organic dyes from waste water using hierarchical NiO spheres with high surface area, J. Phys. Chem. C 116 (2012) 6873-6878.

    25. [25]

      [25] X. Li, S. Xiong, J. Li, J. Bai, Y. Qian, Mesoporous NiO ultrathin nanowire networks topotactically transformed from a-Ni(OH)2 hierarchical microspheres and their superior electrochemical capacitance properties and excellent capability for water treatment, J. Mater. Chem. 22 (2012) 14276-14283.

    26. [26]

      [26] D.B. Kuang, B.X. Lei, Y.P. Pan, X.Y. Yu, C.Y. Su, Fabrication of novel hierarchical b-Ni(OH)2 and NiO microspheres via an easy hydrothermal process, J. Phys. Chem. C 113 (2009) 5508-5513.

    27. [27]

      [27] S. Ding, T. Zhu, J.S. Chen, et al., Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance, J. Mater. Chem. 21 (2011) 6602-6606.

    28. [28]

      [28] O.M. Yaghi, H. Li, T.L. Groy, Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid, J. Am. Chem. Soc. 118 (1996) 9096-9101.

    29. [29]

      [29] G. Singh, I.P.S. Kapoor, S. Dubey, Kinetics of thermal decomposition of ammonium perchlorate with nanocrystals of binary transition metal ferrites, Propellants Explos. Pyrotech. 34 (2009) 72-77.

    30. [30]

      [30] L. Liu, F. Li, L. Tan, L. Ming, Y. Yi, Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate, Propellants Explos. Pyrotech. 29 (2004) 34-38.

    31. [31]

      [31] R.A. Chandru, S. Patra, C. Oommen, N. Munichandraiah, B.N. Raghunandan, Exceptional activity of mesoporous b-MnO2 in the catalytic thermal sensitization of ammonium perchlorate, J. Mater. Chem. 22 (2012) 6536-6538.

    32. [32]

      [32] J. Wang, C. Wei, H. Pang, et al., Facile synthesis of mono-dispersive hierarchical nickel-based microspheres as potential catalysts, Catal. Commun. 20 (2011) 1031-1036.

    33. [33]

      [33] X. Shen, J.P. Yang, Y. Liu, Y.S. Luo, S.Y. Fu, Facile surfactant-free synthesis of monodisperse Ni particles via a simple solvothermal method and their superior catalytic effect on thermal decomposition of ammonium perchlorate, New J. Chem. 35 (2011) 1403-1409.

    34. [34]

      [34] J. Yin, F. Gao, J. Wang, Q. Lu, Synthesis and mechanism studies of novel drum-like Cd(OH)2 superstructures, Chem. Commun. 47 (2011) 4141-4143.

    35. [35]

      [35] X. Guan, L. Li, J. Zheng, G. Li, MgAl2O4 nanoparticles: a new low-density additive for accelerating thermal decomposition of ammonium perchlorate, RSC Adv. 1 (2011) 1808-1814.

  • 加载中
    1. [1]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2024.100210

    3. [3]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    4. [4]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    5. [5]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    6. [6]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    7. [7]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    8. [8]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    9. [9]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    10. [10]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    11. [11]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    12. [12]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    13. [13]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    14. [14]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    15. [15]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    16. [16]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    17. [17]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    18. [18]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    19. [19]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    20. [20]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

Metrics
  • PDF Downloads(0)
  • Abstract views(1016)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return