Citation: Feng Jia, Jin-Long Mao, Xue-Yun Yang, Yan Ma, Cheng Yao. Thermal, physical and mechanical properties of hydrogenated dimer acid-based Nylon 636/Nylon 66 copolymers[J]. Chinese Chemical Letters, ;2013, 24(07): 654-658. shu

Thermal, physical and mechanical properties of hydrogenated dimer acid-based Nylon 636/Nylon 66 copolymers

  • Corresponding author: Cheng Yao, 
  • Received Date: 27 January 2013
    Available Online: 10 April 2013

  • Hydrogenated dimer acid-based Nylon 636/Nylon 66 copolymers were synthesized by in situ polymerization. The effects of Nylon 66 contents on the copolymers were characterized by intrinsic viscosity measurements, attenuated total reflection-Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and mechanical tests. The results showed that incorporation of Nylon 66 into hydrogenated dimer acid-based Nylon had no significant effect on the glass transition or melting temperatures. However, the crystallization temperature, crystallinity degree and the maximum rate of decomposition temperature from derivative thermogravimetry measurements vary. Mechanical testing data revealed that with increasing Nylon 66 concentrations, the tensile strength of copolymers increased, while the elongation at break point and notched izod impact strength decreased. The physical and mechanical properties of HN-40, HN-50 and HN-60 are similar to those of the current PA11, PA1212, and PA1111 Nylon products.
  • 加载中
    1. [1]

      [1] M. Rodrigue, H. Elodie, W. Kui, et al., High strain rate behaviour of renewable biocomposites based on dimer fatty acid polyamides and cellulose fibres, Compos. Sci. Technol. 71 (2001) 674-682.

    2. [2]

      [2] U. Biermann, W. Friedt, S. Lang, et al., New syntheses with oils and fats as renewable raw materials for the chemical industry, Angew. Chem. Int. Ed. 39 (2000) 2207-2224.

    3. [3]

      [3] M.A.R. Meier, J.O. Metzger, U.S. Schubert, Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev. 36 (2007) 1788-1802.

    4. [4]

      [4] Z.S. Petrović, Polyurethanes from vegetable oils, Polym. Rev. 48 (2008) 109-155.

    5. [5]

      [5] V. Sharma, P.P. Kundu, Condensation polymers from natural oils, Prog. Polym. Sci. 33 (2008) 1199-1215.

    6. [6]

      [6] C.K. Williams, M.A. Hillmyer, Polymers from renewable resources: a perspective for a special issue of polymer reviews, Polym. Rev. 48 (2008) 1-10.

    7. [7]

      [7] E. Hablot, D. Zheng, M. Bouquey, L. Avérous, Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties, Macromol. Mater. Eng. 293 (2008) 922-929.

    8. [8]

      [8] L.J. Sun, C. Yao, H.F. Zheng, J. Lin, A novel direct synthesis of polyol from soybean oil, Chin. Chem. Lett. 23 (2012) 919-922.

    9. [9]

      [9] S.N. Khot, J.J. Lascala, E. Can, et al., Development and application of triglyceridebased polymers and composites, J. Appl. Polym. Sci. 82 (2001) 703-723.

    10. [10]

      [10] F.S. Güner, Y. Yağci, A.T. Erciyes, Polymers from triglyceride oils, Prog. Polym. Sci. 31 (2006) 633-670.

    11. [11]

      [11] W.Z. Wang, Z.F. Zhang, M.Y. Xu, Y.H. Zhang, Synthesis and characterization of polyamides based on dimer acid, J. Wuhan Univ. Technol. 24 (2009) 367-370.

    12. [12]

      [12] X.M. Chen, H. Zhong, L.Q. Jia, et al., Polyamides derived from piperazine and used for hot-melt adhesives: synthesis and properties, Int. J. Adhes. Adhes. 22 (2002) 75-79.

    13. [13]

      [13] X.D. Fan, Y.L. Deng, J. Waterhouse, P. Pfromm, Synthesis and characterization of polyamide resins from soy-based dimer acids and different amides, J. Appl. Polym. Sci. 68 (1998) 305-314.

    14. [14]

      [14] H. Elodie, D. Bertrand, B. Michen, L. Avérous, Dimer acid-based thermoplastic bio-polyamides: reaction kinetics, properties and structure, Polymer 51 (2010) 5895-5902.

    15. [15]

      [15] A. Bajpai, K. Khare, Direct polycondensation of castor oil based dimer acid and aromatic diamines using triphenylphosphite, J. Macromol. Sci. A 41 (2004) 275-293.

    16. [16]

      [16] S. Cavus, M.A.Gürkaynak, Influence of monofunctional reactants on the physical properties of dimer acid-based polyamides, Polym. Advan. Technol. 17 (2006) 30-36.

    17. [17]

      [17] E.V. Fomina, G.N. Chervyakova, Y.A. Kurskⅱ, A.P. Sineokov, Reaction of dimerized fatty acid with aliphatic diamines and properties of reaction products, Russ. J. Appl. Chem. 78 (2005) 1142-1145.

    18. [18]

      [18] X.H. Wang, X.L. Fang, C. Yao, F.C. Wu, Morphology and thermal properties of Nylon copolymer containing dimer acid, adipic acid and hexamethylenediamine, J. Appl. Polym. Sci. 119 (2011) 2511-2516.

    19. [19]

      [19] E. Hablot, R. Matadi, S. Ahzi, L. Avérous, Renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres: thermal, physical and mechanical properties, Compos. Sci. Technol. 70 (2010) 504-509.

    20. [20]

      [20] H. Elodie, R. Matadi, S. Ahzi, et al., Yield behavior of renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres, Compos. Sci. Technol. 70 (2010) 525-529.

    21. [21]

      [21] S.H. Cho, M.S. Jhon, S.H. Yuk, Temperature-sensitive swelling behavior of polymer gel composed of poly(N,N-dimethylaminoethyl methacrylate) and its copolymers, Eur. Polym. J. 35 (1999) 1841-1845.

    22. [22]

      [22] S.H. Cho, M.S. Jhon, S.H. Yuk, H.B. Lee, Temperature-induced phase transition of poly(N,N-dimethylaminoethyl methacrylate-co-acrylamide), J. Polym. Sci. Pol. Phys. 35 (1997) 595-598.

    23. [23]

      [23] X.Z. Zhang, J.T. Zhang, R.X. Zhuo, C.C. Chu, Synthesis and properties of thermosensitive, crown ether incorporated poly(N-isopropylacrylamide)hydrogel, Polymer 43 (2002) 4823-4827.

    24. [24]

      [24] E.M. Bradbury, A. Elliott, Infra-red spectra and chain arrangement in some polyamides, polypeptides and fibrous proteins, Polymer 4 (1963) 47-59.

    25. [25]

      [25] H. Arimoto, a-g Transition of Nylon 6, J. Polym. Sci., A Gen. Pap. 2 (1964) 2283-2295.

    26. [26]

      [26] Y. Yoshioka, K. Tashiro, C. Ramesh, Structural change in the Brill transition of Nylon m/n (2) conformational disordering as viewed from the temperaturedepending infrared spectral measurement, Polymer 44 (2003) 6407-6417.

    27. [27]

      [27] I. Sandeman, A. Keller, Crystallinity studies of polyamides by infrared, specific volume and X-ray methods, J. Polym. Sci. 19 (1956) 401-435.

    28. [28]

      [28] D. Garcia, Fourier-transform infrared study of polystyrene/poly(vinyl methyl ether) blends, J. Polym. Sci. Pol. Phys. 22 (1984) 107-115.

    29. [29]

      [29] N. Vasanthan, N.S. Murthy, R.G. Bray, Investigation of Brill transition in Nylon 6 and Nylon 66 by infrared spectroscopy, Macromolecules 31 (1998) 8433-8435.

    30. [30]

      [30] G. Rotter, H. Ishida, FTIR separation of Nylon-6 chain conformation: clarification of the mesomorphous and γ-crystalline phases, J. Polym. Sci. Pol. Phys. 30 (1992) 485-495.

    31. [31]

      [31] I. Matsubara, J.H. Magill, An infra-red study of the interaction of polyamides with iodine in iodine-potassium iodide solution, Polymer 7 (1966) 199-215.

    32. [32]

      [32] V.G. Heidemann, H. Zahn, Beitrag zur deutung des infrarotspektrums von Nylon 66, Macromol. Chem. Phys. 62 (1963) 123-133.

    33. [33]

      [33] Y.J. Li, G.S. Zhang, D.Y. Yan, Synthesis and crystallization behavior of Nylon 12 14. I. Preparation and melting behavior, J. Appl. Polym. Sci. 88 (2003) 1581-1589.

    34. [34]

      [34] A. Ziabicki, K. Kedzierska, Studies on the orientation phenomena by fiber formation from polymer melts. Part I. Preliminary investigation on polycapronamide, J. Appl. Polym. Sci. 2 (1959) 14-23.

    35. [35]

      [35] G.B. Vilas, E.S. Joseph, L. James, White melt spinning of Nylon 6: structure development and mechanical properties of as-spun filaments, J. Appl. Polym. Sci. 21 (1977) 2341-2358.

    36. [36]

      [36] H.Z. Li, Y.J. Wu, H. Sato, et al., A new facile method for preparation of Nylon-6 with high crystallinity and special morphology, Macromolecules 42 (2009) 1175-1179.

    37. [37]

      [37] Y. Zhang, K.L. Cheng, J.R. Xu, Thermal stability studies of polyamides and their block copolymers, Thermochim. Acta 425 (2005) 137-141.

    38. [38]

      [38] P.N. Thanki, R.P. Singh, Progress in the area of degradation and stabilization of Nylon 66, J. Macromol. Sci-Pol. R. 38 (1998) 595-614.

  • 加载中
    1. [1]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    2. [2]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    5. [5]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    6. [6]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    7. [7]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    8. [8]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    9. [9]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    10. [10]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    11. [11]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    12. [12]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    13. [13]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    14. [14]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    15. [15]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    16. [16]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    17. [17]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    18. [18]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    19. [19]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    20. [20]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

Metrics
  • PDF Downloads(0)
  • Abstract views(779)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return