Citation: Ying Meng, Guan Wang, Yue Li, Kuan Hou, Yue Yuan, Li-Juan Zhang, Hong-Rui Song, Wei Shi. Synthesis and biological evaluation of new pyrrolopyrazinone compounds as potential antitumor agents[J]. Chinese Chemical Letters, ;2013, 24(07): 619-621. shu

Synthesis and biological evaluation of new pyrrolopyrazinone compounds as potential antitumor agents

  • Corresponding author: Hong-Rui Song,  Wei Shi, 
  • Received Date: 6 March 2013
    Available Online: 28 March 2013

  • A series of pyrrolo[1,2-a]pyrazinone compounds (5a-9f) were synthesized, and their cytotoxic activity against SKOV-3, A549, HeLa cells in vitro were evaluated by the MTT method. Some of the compounds showed potential antitumor activity against three tumor cell lines. Among them, compounds 9c and 9d showed the most potent cytotoxic activity. The preliminary mechanism of action was discussed.
  • 加载中
    1. [1]

      [1] F. Deng, J.J. Lu, H.Y. Liu, Synthesis and antitumor activity of novel salvicine analogues, Chin. Chem. Lett. 22 (2011) 25-28.

    2. [2]

      [2] E.N. Delphine, M. Peter, L. Thomas, Chiroptical analysis of marine sponge alkaloids sharing the pyrrolopyrazinone core, Chem. Eur. J. 10 (2004) 1141-1148.

    3. [3]

      [3] A. Umeyama, S. Ito, E. Yuasa, et al., A new bromopyrrole alkaloid and the optical resolution of the racemate from the marine sponge Homaxinella sp., J. Nat. Prod. 61 (1998) 1433-1434.

    4. [4]

      [4] G.B. Martin, M.B. Andrew, C.W. Anthony, First syntheses of the pyrroloketopiperazine marine natural products (±)-longamide, (±)-longamide B, (±)-longamide B methyl ester and (±)-hanishin, New J. Chem. 23 (1999) 687-690.

    5. [5]

      [5] R.B. Kinnel, H.P. Gehrken, R. Swali, Palau'amine and its congeners: a family of bioactive bisguanidines from the marine sponge Stylotella aurantium 1, J. Org. Chem. 63 (1998) 3281-3286.

    6. [6]

      [6] L. Thomas, J.E.N. Delphine, Z. Michael, Study on the absolute configuration of ()-palau'amine, Tetrahedron Lett. 51 (2010) 6353-6355.

    7. [7]

      [7] Data for new compounds. 5a: Yield 62%. Mp: 147-150℃; ESI-MS: m/z 163.9[M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 6.95 (s, 1H), 6.63 (d, 1H), 6.19-6.12 (m, 1H), 4.83 (s, 1H), 4.67 (s, 2H), 1.13 (s, 3H). 5b: Yield 67%. Mp: 153-155℃; ESI-MS: m/z 192.2 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 6.99-6.93 (m, 1H), 6.60 (dd, 1H), 6.13 (dd, 1H), 4.24 (d, 1H), 3.89 (d, 1H), 3.51 (dt, 1H), 3.36-3.24 (m, 2H), 3.13 (m, 2H), 1.17 (s, 3H). 6a: Yield 31%. Mp: 144-146℃; ESI-MS: m/z 205.9 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 7.32 (dd, 1H), 7.24 (s, 1H), 6.83-6.80 (m, 1H), 6.50 (dd, 1H), 5.37 (s, 1H), 2.20 (s, 3H), 1.13 (s, 3H). 6b: Yield 27%. Mp: 182-185℃; ESIMS: m/z 234.2 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 7.33 (m, 1H), 7.25 (dd, 1H), 6.84 (dd, 1H), 6.50 (s, 1H), 4.06 (m, 2H), 3.50 (m, 2H), 2.24 (s, 3H), 1.23 (s, 3H). 6c: Yield 36%. Mp: 176-178℃; ESI-MS: m/z 261.9 [M+Na]+; 1H NMR (300 MHz, DMSO-d6): δ 7.33 (dd, 1H), 7.24 (s, 1H), 6.84-6.79 (m, 1H), 6.50 (dd, 1H), 5.39 (s, 2H), 2.21 (s, 3H). 6d: Yield 34%. Mp: 200-202℃; ESI-MS: m/z 267.9 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 7.11-7.05 (m, 1H), 6.66 (dd, 1H), 6.14 (dd, 1H), 4.94 (d, 1H), 4.94 (d, 1H), 4.51-4.29 (m, 1H), 4.07 (dt, 1H), 3.99 (d, 1H), 3.95-3.78 (m, 1H), 3.73 (dd, 1H), 3.45 (dt, 1H), 1.40 (s, 3H). 8a: Yield 73%. Mp: 139-141℃; ESIMS: m/z 240 [M]+; 1H NMR (300 MHz, DMSO-d6): δ 7.44 (d, J=8.2 Hz, 1H), 7.09 (s, 1H), 7.03 (d, J=8.2 Hz, 2H), 6.66 (d, 1H), 6.55 (s, 1H), 5.93-5.88 (m, 1H), 5.50 (s, 2H), 2.20 (s, 3H). 8b: Yield 78%. Mp: 191-193℃; ESI-MS: m/z 268 [M]+, 1H NMR (300 MHz, DMSO-d6): δ 7.11 (d, 2H, J=8.2 Hz), 7.03 (d, 2H, J=8.2 Hz), 6.72-6.67 (m, 1H), 6.56 (dd, 1H), 5.97 (dd, 1H), 4.55 (d, 1H), 4.30 (t, 1H), 4.23 (d, 1H), 3.54 (dt, 1H), 3.47-3.35 (m, 1H), 2.18 (s, 3H), 1.02 (t, 2H). 9a: Yield 29%. Mp: 111-112℃; ESI-MS: m/z 282 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 10.52 (s, 1H), 7.45 (dd, 1H), 7.37 (s, 1H), 7.27 (d, 2H, J=8.1 Hz), 7.19 (d, 2H, J=8.1 Hz), 6.96 (d, 1H, J=3.9 Hz), 6.57 (dd, 1H, J=3.9, 2.6 Hz), 2.31 (s, 3H), 1.71 (s, 3H). 9b: Yield 31%. Mp: 194-197℃; ESI-MS: m/z 310 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 7.18 (d, 2H, J=8.3 Hz), 7.13-7.09 (m, 1H), 7.06 (d, 2H, J=8.3 Hz), 6.60 (dd, 1H), 6.09 (dd, 1H), 5.62 (d, 1H, J=13.0 Hz), 4.34 (d, 1H, J=13.0 Hz), 4.22-4.10 (m, 1H), 3.94 (dd, 1H), 3.88-3.77 (m, 1H), 3.62 (dt, 1H), 2.21 (s, 3H), 2.04 (s, 3H). 9c: Yield 23%. Mp: 110-113℃; ESI-MS: m/z 316 [M+H]+; 1H NMR(300 MHz, DMSO-d6): δ 7.90 (d, 2H, J=8.2 Hz), 7.35 (d, 2H, J=8.2 Hz), 7.13-7.08 (m, 1H), 6.87 (dd, 1H), 6.14 (dd, 1H), 5.81 (s, 2H), 3.57 (s, 2H), 2.37 (s, 3H). 9d: Yield 23%. Mp: 191-193℃; ESI-MS: m/z 343.9 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 7.15 (d, 2H, J=8.3 Hz), 7.12-7.09 (m, 1H), 7.05 (d, 2H, J=8.3 Hz), 6.59 (dd, 1H), 6.07 (dd, 1H), 5.60 (d, 1H), 4.40 (dt, 3H), 4.16 (dt, 1H), 4.03-3.80 (m, 2H), 3.62 (dt, 1H), 2.18 (s, 3H). 9e: Yield 32%. Mp: 123-125℃; ESI-MS: m/z 330 [M+H]+; 1H NMR (300 MHz, DMSO-d6): δ 10.71 (s, 1H), 7.49-7.33 (m, 2H), 7.25 (d, 2H, J=7.9 Hz), 7.17 (d, 2H, J=7.9 Hz), 6.97 (s, 1H), 6.57 (s, 1H), 3.57 (t, 2H), 2.70-2.52 (m, 2H), 2.28 (s, 3H). 9f: Yield 27%. Mp: 192-194℃; ESI-MS: m/z 357.5 [M+H]+, 380 [M+Na]+; 1H NMR (300 MHz, DMSOd6): δ 7.18 (d, 2H, J=8.3 Hz), 7.12 (d, 1H), 7.04 (d, 2H, J=8.3 Hz), 6.71-6.51 (m, 2H), 6.26-6.00 (m, 2H), 5.82-5.52 (m, 2H), 4.33 (m, 1H), 4.22-4.09 (m, 1H), 4.04 (m, 1H), 3.99-3.89 (m, 1H), 3.73 (dt, 1H), 3.68-3.54 (m, 1H), 2.18 (s, 3H).

  • 加载中
    1. [1]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    2. [2]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    3. [3]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    6. [6]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    7. [7]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    8. [8]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    9. [9]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    10. [10]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    11. [11]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    12. [12]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    13. [13]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    14. [14]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    15. [15]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    16. [16]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    17. [17]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    18. [18]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    19. [19]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    20. [20]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

Metrics
  • PDF Downloads(0)
  • Abstract views(606)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return