Citation: Bang-Tun Zhao, Xiao-Min Zhu, Xiu-Hua Chen, Zhen-Ning Yan, Wei-Min Zhu. Novel clicked tetrathiafulvalene-calix[4]arene assemblies:Synthesis and intermolecular electron transfer toward p-chloranil[J]. Chinese Chemical Letters, ;2013, 24(07): 573-577.
-
Two tetrathiafulvalene-calix[4]arene assemblies (TTF-calix-1 and TTF-calix-2) have been synthesized by the click reaction. Both their cyclic voltammograms show, as expected, two one-electron quasi-reversible redox behavior. The UV-vis absorption spectra studies show that these two assemblies undergo progressive oxidation at the TTF moiety in presence of increasing amounts of Cu2+ or Hg2+. Moreover, the absorption studies show intermolecular electron transfer between compounds TTF-calix-1 or TTF-calix-2 and p-chloranil may be promoted by specific metal ions such as Pb2+, Sc3+ etc.
-
-
[1]
[1] J. Yamada, T. Sugimoto, TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene, Kodansha-Springer, Tokyo, 2004.
-
[2]
[2] D. Canevet, M. Sallé, G.X. Zhang, D.Q. Zhang, D.B. Zhu, Tetrathiafulvalene (TTF) derivatives: key buildinγ-blocks for switchable processes, Chem. Commun. (2009) 2245-2269.
-
[3]
[3] C.D. Gutsche, Calixarenes Revisited, The Royal Society of Chemistry, Cambridge, 1998.
-
[4]
[4] C.D. Gutsche, Calixarenes: An Introduction, The Royal Society of Chemistry, Cambridge, 2008.
-
[5]
[5] J. Vicens, J.M. Harrowfield, L. Baklouti, Calixarenes in the Nanoworld, Springer Publisher, Dordrecht, Netherlands, 2007.
-
[6]
[6] J.B. de Vains Regnouf, M. Sallé, R. Lamartine, Conjugated p-(tetrathiafulvalenylmethylideneamino) calix[4]arene, J. Chem. Soc. Perkin Trans. 2 (1997) 2461-2463.
-
[7]
[7] B.T. Zhao, M.J. Blesa, N. Mercier, F. Le Derf, M. Sallé, A tetrathiafulvalene-appended calix[4]arene: synthesis and electrochemical characterization, Supramol. Chem. 17 (2005) 465-468.
-
[8]
[8] B.T. Zhao, M.J. Blesa, N. Mercier, F. Le Derf, M. Sallé, A calixarene-amide-tetrathiafulvalene assembly for the electrochemical detection of anions, New J. Chem. 29 (2005) 1164-1167.
-
[9]
[9] B.T. Zhao, M.J. Blesa, N. Mercier, F. Le Derf, M. Sallé, Biscalix[4]arenes bridged by an electroactive tetrathiafulvalene unit, J. Org. Chem. 70 (2005) 6254-6257.
-
[10]
[10] M.J. Blesa, B.T. Zhao, M. Allain, F. Le Derf, M. Sallé, Bis(calixcrown)tetrathiafulvalene receptors, Chem. Eur. J. 12 (2006) 1906-1914.
-
[11]
[11] J. Lyskawa, M. Sallé, J.Y. Balandier, et al., Monitoring the formation of TTF dimers by Na+ complexation, Chem. Commun. (2006) 2233-2235.
-
[12]
[12] B.T. Zhao, M.J. Blesa, F. Le Derf, et al., Carboxylic acid derivatives of tetrathiafulvalene: key intermediates for the synthesis of redox-active calixarene-based anion receptors, Tetrahedron 63 (2007) 10768-10777.
-
[13]
[13] J. Lyskawa, D. Canevet, M. Allain, M. Sallé, An electron-rich three dimensional receptor based on a calixarene-tetrathiafulvalene assembly, Tetrahedron Lett. 51 (2010) 5868-5872.
-
[14]
[14] B.T. Zhao, L.W. Liu, J.J. Ding, G.R. Qu, Synthesis of tetrathiafulvalene-calixarene derivatives and their intermolecular electron transfer towards tetrachloro-1,4-benzoquinone, Chem. J. Chin. Univ. 32 (2011) 2103-2108.
-
[15]
[15] M.H. Düker, R. Gómez, C.M.L. Vande Velde, V.A. Azov, Upper rim tetrathiafulvalene-bridged calix[4]arenes, Tetrahedron Lett. 52 (2011) 2881-2884.
-
[16]
[16] M.H. Lee, Q.Y. Cao, S.K. Kim, J.L. Sessler, J.S. Kim, Anion responsive TTF-appended calix[4]arenes: synthesis and study of two different conformers, J. Org. Chem. 76 (2011) 870-874.
-
[17]
[17] F. Sun, F. Hu, G.X. Zhang, Q.Y. Zheng, D.Q. Zhang, Calix[4]arenes with electroactive tetrathiafulvalene and quinone units: metal-ion-promoted electron transfer, J. Org. Chem. 76 (2011) 6883-6888.
-
[18]
[18] F. Sun, F. Hu, G.X. Zhang, D.Q. Zhang, Metal-ion-promoted electron transfer between tetrathiafulvalene and quinone units within a calix[4]arene framework and tuning through coordination of the neighboring crown ether with a sodium cation, Chem. Asian J. 7 (2012) 183-189.
-
[19]
[19] K. Flídrová, M. Tkadlecová, K. Lang, P. Lhoták, Anion complexation by calix[4]-areneeTTF conjugates, Dyes Pigments 92 (2011) 668-673.
-
[20]
[20] B.T. Zhao, W.B. Guo, P.Z. Hu, Synthesis, structure and electrochemical behavior of a novel redox-active thiacalix[4]arene-tetrathiafulvalene assembly, Heterocycles 81 (2010) 1661-1667.
-
[21]
[21] B.T. Zhao, Z. Zhou, Z.N. Yan, et al., Synthesis and electrochemical behavior of a model redox-active thiacalix[4]arene-tetrathiafulvalene assembly, Tetrahedron Lett. 51 (2010) 5815-818.
-
[22]
[22] B.T. Zhao, X.M. Zhu, Q.M. Peng, et al., A novel redox-active calix[4]arene-tetrathiafulvalene dyad, Cent. Eur. J. Chem. 9 (2011) 1102-108.
-
[23]
[23] B.T. Zhao, J.J. Li, Z. Zhou, Z.N. Yan, W.M. Zhu, Synthesis and electrochemical behavior of electroactive bistetrathiafulvalene-attached thiacalix[4]arene assemblies, Chem. Res. Chin. Univ. 28 (2012) 828-32.
-
[24]
[24] H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. 40 (2001) 2004-021.
-
[25]
[25] M. Meldal, C.W. Torn鴈, Cu-catalyzed azide-alkyne cycloaddition, Chem. Rev. 108 (2008) 2952-015.
-
[26]
[26] Y.L. Zhao, W.R. Dichtel, A. Trabolsi, et al., A redox-switchable a-cyclodextrinbased[2]rotaxane, J. Am. Chem. Soc. 130 (2008) 11294-1296.
-
[27]
[27] B.T. Zhao, L.W. Liu, X.C. Li, G.R. Qu, A clicked tetrathiafulvalene-oxyquinoline dyad as an optical and electrochemical Zn2+ probe, Chin. J. Chem. 30 (2012) 254-58.
-
[28]
[28] L.W. Liu, W.B. Guo, X.C. Li, G.R. Qu, B.T. Zhao, Progress on synthesis of calixarene derivatives via click chemistry, Chin. J. Org. Chem. 30 (2010) 1960-974.
-
[29]
[29] E.M. Collins, M.A. McKervey, E. Madigan, et al., Chemically modified calix[4]arenes: regioselective synthesis of 1, 3-(distal) derivatives and related compounds. X-ray crystal structure of a diphenol-initrile, J. Chem. Soc., Perkin Trans. 1 (1991) 3137-142.
-
[1]
-
-
[1]
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
-
[2]
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
-
[3]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[4]
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
-
[5]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[6]
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
-
[7]
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
-
[8]
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
-
[9]
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
-
[10]
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458
-
[11]
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
-
[12]
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
-
[13]
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463
-
[14]
Xing Xiao , Yunling Jia , Wanyu Hong , Yuqing He , Yanjun Wang , Lizhi Zhao , Huiqin An , Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474
-
[15]
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
-
[16]
Chong-Yang Shi , Jian-Xing Gong , Zhen Li , Chao Shu , Long-Wu Ye , Qing Sun , Bo Zhou , Xin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895
-
[17]
Songtao Cai , Liuying Wu , Yuan Li , Soham Samanta , Jinying Wang , Bing Liu , Feihu Wu , Kaitao Lai , Yingchao Liu , Junle Qu , Zhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599
-
[18]
Lei Zhou , Youjun Zhou , Lizhen Fang , Yiqiao Bai , Yujia Meng , Liang Li , Jie Yang , Yong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509
-
[19]
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
-
[20]
Bingbing Shi , Yuchun Wang , Yi Zhou , Xing-Xing Zhao , Yizhou Li , Nuoqian Yan , Wen-Juan Qu , Qi Lin , Tai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(615)
- HTML views(0)