Citation: Hong-Gen Peng, Xiao-Hong Li, Le Xu, Peng Wu. Trimodel hierarchical yolk-shell porous materials TS-1@mesocarbon:Synthesis and catalytic application[J]. Chinese Chemical Letters, ;2013, 24(07): 559-562. shu

Trimodel hierarchical yolk-shell porous materials TS-1@mesocarbon:Synthesis and catalytic application

  • Corresponding author: Xiao-Hong Li,  Peng Wu, 
  • Received Date: 6 March 2013
    Available Online: 19 March 2013

  • Trimodal hierarchical yolk-shell materials consisting of TS-1 core and mesoporous carbon shell (YS-TS-1@MC) was successfully synthesized by using TS-1@mesosilica as hard template, sucrose as carbon source and organic base tetrapropylammonium hydroxide (TPAOH) as silica etching agent. The resultant YS-TS-1@MC contains the micropores (0.51 nm) in TS-1 core, the mesopores (2.9 nm) in carbon shell as well as a void or a stack pore between TS-1 fragements (TS-1 intercrystal mesopores, 18.4 nm). Under the rigorous etching conditions, the crystalline structure of TS-1core was well retained. The YS-TS-1@MC served as a good support for palladium nano-particles (Pd NPs) or Rh(OH)x species, giving rise to efficient bifunctional catalysts for the tandem reactions including one-pot synthesis of propylene oxide or amides.
  • 加载中
    1. [1]

      [1] A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev. 97 (1997) 2373-2420.

    2. [2]

      [2] J. Perez-Ramirez, C.H. Christensen, K. Egeblad, C.H. Christensen, J.C. Groen, Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design, Chem. Soc. Rev. 37 (2008) 2530-2542.

    3. [3]

      [3] C.M.A. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications, Chem. Soc. Rev. 42 (2013) 3876-3893.

    4. [4]

      [4] J. Yu, S.B. Yoon, Y.J. Lee, K.B. Yoon, Fabrication of bimodal porous silicate with silicalite-1 core/mesoporous shell structures and synthesis of nonspherical carbon and silica nanocases with hollow core/mesoporous shell structures, J. Phys. Chem. B 109 (2005) 7040-7045.

    5. [5]

      [5] X. Qian, J. Du, B. Li, et al., Controllable fabrication of uniform core-shell structured zeolite@SBA-15 composites, Chem. Sci. 2 (2011) 2006-2016.

    6. [6]

      [6] L. Xu, Y. Ren, H. Wu, et al., Core/shell-structured TS-1@mesoporous silica-supported Au nanoparticles for selective epoxidation of propylene with H2 and O2, J. Mater. Chem. 21 (2011) 10852-10858.

    7. [7]

      [7] H. Peng, L. Xu, H. Wu, et al., Synthesis and formation mechanism of TS-1@mesosilica core-shell materials templated by triblock copolymer surfactant, Microporous Mesoporous Mater. 153 (2012) 8-17.

    8. [8]

      [8] H. Peng, L. Xu, L. ZHang, et al., Synthesis of bifunctional catalyst Au/TS-1@mesosilica and applied for direct propylene epoxidation with H2 and O2, Sci. Sin. Chim. 42 (2012) 548-557.

    9. [9]

      [9] J. Liu, S.Z. Qiao, J.S. Chen, et al., Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries, Chem. Commun. 47 (2011) 12578-12591.

    10. [10]

      [10] X. Wang, Y. Yang, Y. Ma, J. Yao., Controlled synthesis of multi-shelled transition metal oxide hollow structures through one-pot solution route, Chin. Chem. Lett. 24 (2013) 1-6.

    11. [11]

      [11] J. Liu, S.Z. Qiao, S. Budi Hartono, G.Q.M. Lu, Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors, Angew. Chem. Int. Ed. 49 (2010) 4981-4985.

    12. [12]

      [12] J. Liu, H.Q. Yang, F. Kleitz, et al., Yolk-shell hybrid materials with a periodic mesoporous organosilica shell: ideal nanoreactors for selective alcohol oxidation, Adv. Funct. Mater. 22 (2012) 591-599.

    13. [13]

      [13] Y. Yang, X. Liu, X. Li, et al., A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions, Angew. Chem. Int. Ed. 51 (2012) 9164-9168.

    14. [14]

      [14] Y. Yang, J. Liu, X. Li, X. Liu, Q. Yang, Organosilane-assisted transformation from core-shell to yolk-shell nanocomposites, Chem. Mater. 23 (2011) 3676-3684.

    15. [15]

      [15] H. Peng, L. Xu, L. Zhang, et al., Synthesis of core-shell structured TS-1@mesocarbon materials and their applications as a tandem catalyst, J. Mater. Chem. 22 (2012) 14219-14227.

    16. [16]

      [16] P. Wu, H. Peng, L. Xu, K. Zhang, H. Wu, One-pot synthesis of benzamide over a robust tandem catalyst based on center radially fibrous silica encapsulated TS-1, Chem. Commun. 49 (2013) 2709-2711.

    17. [17]

      [17] T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, The production of propene oxide: catalytic processes and recent developments, Ind. Eng. Chem. Res. 45 (2006) 3447-3459.

  • 加载中
    1. [1]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    2. [2]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    3. [3]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    4. [4]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    5. [5]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    6. [6]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    7. [7]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    8. [8]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    9. [9]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    10. [10]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    11. [11]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    12. [12]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    13. [13]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    14. [14]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    15. [15]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    16. [16]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    17. [17]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    18. [18]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    19. [19]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    20. [20]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

Metrics
  • PDF Downloads(0)
  • Abstract views(618)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return