Citation: Hong-Jun Yang, Fang-Jun Xiong, Jie Li, Fen-Er Chen. A family of novel bifunctional organocatalysts:Highly enantioselective alcoholysis of meso cyclic anhydrides and its application for synthesis of the key intermediate of P2X7 receptor antagonists[J]. Chinese Chemical Letters, ;2013, 24(07): 553-558. shu

A family of novel bifunctional organocatalysts:Highly enantioselective alcoholysis of meso cyclic anhydrides and its application for synthesis of the key intermediate of P2X7 receptor antagonists

  • Corresponding author: Fen-Er Chen, 
  • Received Date: 21 February 2013
    Available Online: 2 April 2013

  • A family of novel squaramides/sulfamides based on 1,2-alkamine was developed as chiral bifunctional catalysts to promote the asymmetric alcoholysis of meso cyclic anhydrides. The hemiesters were obtained in high yield with up to 93% ee. The usefulness of this methodology was demonstrated in the asymmetric synthesis of the key intermediate of P2X7 receptor antagonists.
  • 加载中
    1. [1]

      [1] (a) C.E. Song, Cinchona Alkaloids in Synthesis and Catalysis: Ligands Immobilization and Organocatalysis, Wiley-VCH, Weinheim, 2009;

    2. [2]

      (b) S.K. Tian, Y. Chen, J. Hang, et al., Asymmetric organic catalysis with modified cinchona alkaloids, Acc. Chem. Res. 37 (2004) 621-631;

    3. [3]

      (c) Y.C. Chen, The development of asymmetric primary amine catalysts based on cinchona alkaloids, Synlett (2008) 1919-1930;

    4. [4]

      (d) S. Jew, H. Park, Cinchona-based phase-transfer catalysts for asymmetric synthesis, Chem. Commun. (2009) 7090-7103;

    5. [5]

      (e) T. Marcelli, H. Hiemstra, Cinchona alkaloids in asymmetric organocatalysis, Synthesis (2010) 1229-1279;

    6. [6]

      (f) Q.L. Zhou, Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, 2011;

    7. [7]

      (g) E.M.O.Y. Yeboah, O. Samuel, Singh, S. Girija, Recent applications of Cinchona alkaloids and their derivatives as catalysts in metal-free asymmetric synthesis, Tetrahedron 67 (2011) 1725-1762;

    8. [8]

      (h) L. Stegbauer, F. Sladojevich, D.J. Dixon, Bifunctional organo/metal cooperative catalysis with cinchona alkaloid scaffolds, Chem. Sci. 3 (2012) 942-958.

    9. [9]

      [2] (a) W. Notz, F. Tanaka, C.F. Barbas Ⅲ, Enamine-based organocatalysis with proline and diamines: the development of direct catalytic asymmetric aldol, Mannich, Michael, and Diels-Alder reactions, Acc. Chem. Res. 37 (2004) 580-591;

    10. [10]

      (b) M.I. Calaza, C. Cativiela, Stereoselective synthesis of quaternary proline analogues, Eur. J. Org. Chem. (2008) 3427-3448;

    11. [11]

      (c) H. Kotsuki, H. Ikishima, A.Okuyama, Enantioselective O-nitroso aldol reaction of silyl enol ethers, Heterocycles 75 (2008) 493-529;

    12. [12]

      (d) H. Kotsuki, H. Ikishima, A. Okuyama, Organocatalytic asymmetric synthesis using proline and related molecules. Part 2, Heterocycles 75 (2008) 757-797;

    13. [13]

      (e) P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Asymmetric aminocatalysis-gold rush in organic chemistry, Angew. Chem. Int. Ed. 47 (2008) 6138-6171;

    14. [14]

      (f) P.S. Bhadury, B.A. Song, Chemistry of organocatalytic asymmetric mannich reactions, Curr. Org. Chem. 14 (2010) 1989-2006;

    15. [15]

      (g) X. Companyo, M. Viciano, R. Rios, Improving asymmetric organocatalysts via supramolecular interactions, Mini-Rev. Org. Chem. 7 (2010) 1-9;

    16. [16]

      (h) C.W. Zheng, G. Zhao, Asymmetric epoxidation of a, b-unsaturated ketones using α,α-diarylprolinols as catalysts, Chin. Sci. Bull. 55 (2010) 1712-1722;

    17. [17]

      (i) G. Della Sala, A. Russo, A. Lattanzi, Noncovalent bifunctional organocatalysis mediated by β-amino alcohols, Curr. Org. Chem. 15 (2011) 2147-2183;

    18. [18]

      (j) S. Itsuno, Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis, Wiley-VCH, Weinheim, 2011;

    19. [19]

      (k) D. Gryko, M. Chromiń ski, D.J. Pielaciń ska, Prolinethioamides versus prolinamides in organocatalyzed Aldol reactions-acomparative study, Symmetry 3 (2011) 265-282;

    20. [20]

      (l) S.K. Panday, Advances in the chemistry of proline and its derivatives: an excellent amino acid with versatile applications in asymmetric synthesis, Tetrahedron: Asymmetry 22 (2011) 1817-1847.

    21. [21]

      [3] (a) Y. Chen, P. McDaid, L. Deng, Asymmetric alcoholysis of cyclic anhydrides, Chem. Rev. 103 (2003) 2965-2984;

    22. [22]

      (b) L. Atodiresei, I. Schiffers, C. Bolm, Stereoselective anhydride openings, Chem. Rev. 107 (2007) 5683-5712;

    23. [23]

      (c) M.D.D. de Villegas, J.A. Gálvez, R. Badorrey, P. López-Ram-de-Víu, Recent advances in enantioselective organocatalyzed anhydride desymmetrization and its application to the synthesis of valuable enantiopure compounds, Chem. Soc. Rev. 40 (2011) 5564-5587.

    24. [24]

      [4] (a) J. Hiratake, Y. Yamamoto, J. Oda, Catalytic asymmetric induction from prochiral cyclic acid anhydrides using cinchona alkaloids, J. Chem. Soc. Chem. Commun. (1985) 1717-1719;

    25. [25]

      (b) J. Hiratake, M. Inagaki, Y. Yamamoto, J. Oda, Enantiotopic-group differentiation. Catalytic asymmetric rinγ-opening of prochiral cyclic acid anhydrides with methanol, using cinchona alkaloids, J. Chem. Soc. Perkin Trans. 1 (1987) 1053-1058.

    26. [26]

      [5] (a) R.A. Aitken, J. Gopal, J.A. Hirst, Catalytic asymmetric synthesis of highly functionalised compounds with six contiguous stereocentres, J. Chem. Soc. Chem. Commun. (1988) 632-634;

    27. [27]

      (b) R.A. Aitken, J. Gopal, Catalytic asymmetric rinγ-opening of bridged tricyclic anhydrides, Tetrahedron: Asymmetry 1 (1990) 517-520;

    28. [28]

      (c) M. Shimizu, K. Matsukawa, T. Fujisawa, Enantioselective esterification of cyclic dicarboxylic anhydrides using chiral amino alcohols as auxiliaries, Bull. Chem. Soc. Jpn. 66 (1993) 2128-2130;

    29. [29]

      (d) C. Bolm, A. Gerlach, C.L. Dinter, Simple and highly enantioselective nonenzymatic ring opening of cyclic prochiral anhydrides, Synlett (1999) 195-196;

    30. [30]

      (e) C. Bolm, C.L. Dinter, A. Seger, H. Hocker, J. Brozio, Synthesis of catalytically active polymers by means of ROMP: an effective approach toward polymeric homogeneously soluble catalysts, J. Org. Chem. 64 (1999) 5730-5731;

    31. [31]

      (f) Y. Chen, S.K. Tian, L. Deng, A highly enantioselective catalytic desymmetrization of cyclic anhydrides with modified cinchona alkaloids, J. Am. Chem. Soc. 122 (2000) 9542-9543;

    32. [32]

      (g) S.H. Oh, H.S. Rho, J.W. Lee, et al., A highly reactive and enantioselective bifunctional organocatalyst for the methanolytic desymmetrization of cyclic anhydrides: prevention of catalyst aggregation, Angew. Chem. 120 (2008) 7990-7993;

    33. [33]

      (h) A. Peschiulli, Y. Gun'ko, S.J. Connon, Highly enantioselective desymmetrization of meso anhydrides by a bifunctional thiourea-based organocatalyst at low catalyst loadings and room temperature, J. Org. Chem. 73 (2008) 2454-2457;

    34. [34]

      (i) H.S. Rho, S.H. Oh, J.W. Lee, et al., Bifunctional organocatalyst for methanolytic desymmetrization of cyclic anhydrides: increasing enantioselectivity by catalyst dilution, Chem. Commun. (2008) 1208-1210;

    35. [35]

      (j) Y. Uozumi, K. Yasoshima, T. Miyachi, S. Nagai, Enantioselective desymmetrization of meso-cyclic anhydrides catalyzed by hexahydro-1H-pyrrolo[1,2-c]imidazolones, Tetrahedron Lett. 42 (2001) 411-414;

    36. [36]

      (k) R. Manzano, J.M. Andrés, M.D. Muruzábal, R. Pedrosa, Synthesis of both enantiomers of hemiesters by enantioselective methanolysis of meso cyclic anhydrides catalyzed by a-amino acid-derived chiral thioureas, J. Org. Chem. 75 (2010) 5417-5420;

    37. [37]

      (l) V.N. Wakchaure, B. List, A new structural motif for bifunctional brønsted acid/base organocatalysis, Angew. Chem. Int. Ed. 49 (2010) 4136-4139;

    38. [38]

      (m) T. Honjo, T. Tsumura, S. Sano, et al., A chiral bifunctional sulfonamideas an organocatalyst: alcoholysis of s-symmetric cyclic dicarboxylic anhydrides, Synlett (2009) 3279-3282;

    39. [39]

      (n) E. Schmitt, I. Schiffers, C. Bolm, Highly enantioselective desymmetrizations of meso-anhydrides, Tetrahedron 66 (2010) 6349-6357;

    40. [40]

      (o) S.X. Wang, F.E. Chen, A novel cost-effective thiourea bifunctional organocatalyst for highly enantioselective alcoholysis of meso-cyclic anhydrides: enhanced enantioselectivity by configuration inversion, Adv. Synth. Catal. 351 (2009) 547-552;

    41. [41]

      (p) T. Okamatsu, R. Irie, T. Katsuki, Asymmetric methanolysis of cyclic mesoanhydrides with tripodal 2,6-trans-1,2,6-trisubstituted piperidine as chiral amine catalyst, Synlett (2007) 1569-1572;

    42. [42]

      (q) S. Oh, H. Rho, J. Lee, et al., A highly reactive and enantioselective bifunctional organocatalyst for the methanolytic desymmetrization of cyclic anhydrides: prevention of catalyst aggregation, Angew. Chem. Int. Ed. 47 (2008) 7872-7875.

    43. [43]

      [6] (a) Z. Chen, W. Xiong, B. Jiang, Zn (ODf)2: preparation and application in asymmetric alkynylation of aldehydes, Chem. Commun. (2002) 2098-2099;

    44. [44]

      (b) B. Jiang, Z. Chen, X. Tang, Highly enantioselective alkynylation of a-keto ester: an efficient method for constructing a chiral tertiary carbon center, Org. Lett. 4 (2002) 3451-3453;

    45. [45]

      (c) B. Jiang, Z. Chen, W. Xiong, Highly enantioselective alkynylation of aldehydes catalyzed by a readily available chiral amino alcohol-based ligand, Chem. Commun. (2002) 1524-1525;

    46. [46]

      (d) B. Jiang, Y.G. Si, The first highly enantioselective alkynylation of chloral: a practical and efficient pathway to chiral trichloromethyl propargyl alcohols, Adv. Synth. Catal. 346 (2004) 669-674;

    47. [47]

      (e) B. Jiang, Y.G. Si, Highly enantioselective construction of a chiral tertiary carbon center by alkynylation of a cyclic N-acyl ketimine: an efficient preparation of HIV therapeutics, Angew. Chem. Int. Ed. 43 (2004) 216-218;

    48. [48]

      (f) B. Jiang, Y.G. Si, Highly enantioselective construction of a chiral tertiary carbon center by alkynylation of a cyclic N-acyl ketimine: an efficient preparation of HIV therapeutics, Angew. Chem. 116 (2004) 218-220;

    49. [49]

      (g) B. Jiang, Z. Chen, H. Huang, Highly stereoselective alkynylation with steroidal alkyne: efficient pathway to 24 (S) or 24 (R)-hydroxylcholesterol, Lett. Org. Chem. 2 (2005) 319-322.

    50. [50]

      [7] (a) F.E. Chen, H.F. Dai, Y.Y. Kuang, H.Q. Jia, Synthetic studies on d-biotin. Part 7: A practical asymmetric total synthesis of d-biotin via enantioselective reduction of meso-cyclic imide catalyzed by oxazborolidine, Tetrahedron: Asymmetry 14 (2003) 3667-3672;

    51. [51]

      (b) T. Shioiri, K. Izawa, T. Konoike, Pharmaceutical Process Chemistry, Wiley- VCH, Weinheim, 2010, pp. 296-297.

    52. [52]

      [8] (a) J.P. Malerich, K. Hagihara, V.H. Rawal, Chiral squaramide derivatives are excellent hydrogen bond donor catalysts, J. Am. Chem. Soc. 130 (2008) 14416-14417;

    53. [53]

      (b) H. Konishi, T.Y. Lam, J.P. Malerich, V.H. Rawal, Enantioselective α-amination of 1,3-dicarbonyl compounds using squaramide derivatives as hydrogen bonding catalysts, Org. Lett. 12 (2010) 2028-2031;

    54. [54]

      (c) Y. Qian, G.Y. Ma, A.F. Lv, et al., Squaramide-catalyzed enantioselective Friedel- Crafts reaction of indoles with imines, Chem. Commun. 46 (2010) 3004-3006;

    55. [55]

      (d) Y. Zhu, J.P. Malerich, V.H. Rawal, Squaramide-catalyzed enantioselective Michael addition of diphenyl phosphite to nitroalkenes, Angew. Chem. Int. Ed. 49 (2010) 153-156.

    56. [56]

      [9] J. Woong Lee, T. Hi Ryu, J. Suk Oh, et al., Self-association-free dimeric cinchona alkaloid organocatalysts: unprecedented catalytic activity, enantioselectivity and catalyst recyclability in dynamic kinetic resolution of racemic azlactones, Chem. Commun. (2009) 7224-7226.

    57. [57]

      [10] P.D. Theisen, C.H. Heathcock, Prochiral recognition in the reaction of 3-substituted glutaric anhydrides with chiral secondary alcohols, J. Org. Chem. 58 (2009) 142-146.

    58. [58]

      [11] (a) X. Huang, J. Zhu, S. Broadbent, The first asymmetric synthesis of a 4-arylsubstituted 5-carboxy-3,4-dihydropyridin-2-one derivative, Tetrahedron Lett. 51 (2010) 1554-1557;

    59. [59]

      (b) X. Huang, S. Broadbent, C. Dvorak, S.H. Zhao, Pilot-plant preparation of 3,4- dihydropyridin-2-one derivatives, the core structures of P2X7 receptor antagonists, Org. Process Res. Dev. 14 (2010) 612-616.

  • 加载中
    1. [1]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    4. [4]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    5. [5]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    6. [6]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    7. [7]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

    10. [10]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    11. [11]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    12. [12]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    13. [13]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    14. [14]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    15. [15]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    16. [16]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    17. [17]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    18. [18]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    19. [19]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    20. [20]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

Metrics
  • PDF Downloads(0)
  • Abstract views(658)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return