Citation: Ting-Ting Li, Cui Xu, Chang-Bin Xiang, Jie Yan. An efficient chlorination of aromatic compounds using a catalytic amount of iodobenzene[J]. Chinese Chemical Letters, ;2013, 24(6): 535-538. shu

An efficient chlorination of aromatic compounds using a catalytic amount of iodobenzene

  • Corresponding author: Jie Yan, 
  • Received Date: 6 January 2013
    Available Online: 19 March 2013

  • An efficient method was developed for chlorination of aromatic compounds with electron-donating groups using iodobenzene as the catalyst and m-chloroperbenzoic acid as the terminal oxidant in the presence of 4-methylbenzenesulfonic acid in THF at room temperature for 24 h, and a series of the monochlorinated compounds was obtained in good yields. In this protocol, the catalyst iodobenzene was first oxidized into the hypervalent iodine intermediate, which then treated with lithium chloride and finally reacted with aromatic compounds to form the chlorinated compounds.
  • 加载中
    1. [1]

      [1] P.J. Stang, V.V. Zhdankin, Organic polyvalent iodine compounds, Chem. Rev. 96 (1996) 1123-1178.

    2. [2]

      [2] V.V. Zhdankin, P.J. Stang, Recent developments in the chemistry of polyvalent iodine compounds, Chem. Rev. 102 (2002) 2523-2584.

    3. [3]

      [3] T. Dohi, Y. Kita, Hypervalent iodine reagents as a new entrance to organocatalysts, Chem. Commun. (2009) 2073-2085.

    4. [4]

      [4] M. Ochiai, Nucleophilic vinylic substitutions of l3-vinyliodanes, J. Organomet. Chem. 611 (2000) 494-508.

    5. [5]

      [5] T. Okuyama, Solvolysis of vinyl iodonium salts. New insights into vinyl cation intermediates, Acc. Chem. Res. 35 (2002) 12-18.

    6. [6]

      [6] M. Frigerio, M. Santagostino, A mild oxidizing reagent for alcohols and 1,2-diols: o-iodoxybenzoic acid (IBX) in DMSO, Tetrahedron Lett. 35 (1994) 8019-8022.

    7. [7]

      [7] K.C. Nicolaou, Y.L. Zhong, P.S. Baran, New synthetic technology for the rapid construction of novel heterocycles—part 1: the reaction of Dess-Martin periodinane with anilides and related compounds, Angew. Chem. Int. Ed. 39 (2000) 622-625.

    8. [8]

      [8] T. Dohi, M. Ito, N. Yamaoka, et al., Hypervalent iodine(Ⅲ): selective and efficient single-electron-transfer (SET) oxidizing agent, Tetrahedron 65 (2009) 10797-10815.

    9. [9]

      [9] M. Traoré, S. Ahmed-Ali, M. Peuchmaur, et al., Hypervalent iodine(Ⅲ)-mediated tandem oxidative reactions: application for the synthesis of bioactive polyspirocyclohexa-2,5-dienones, Tetrahedron 66 (2010) 5863-5872.

    10. [10]

      [10] M. Arisawa, N.G. Ramesh, M. Nakaima, et al., Hypervalent iodine(Ⅲ)-induced intramolecular cyclization of a-(aryl) alkyl-b-dicarbonyl compounds: a convenient synthesis of benzannulated and spirobenzannulated compounds, J. Org. Chem. 66 (2001) 59-65.

    11. [11]

      [11] H. Tohma, H. Morioka, S. Takizawa, et al., Efficient oxidative biaryl coupling reaction of phenol ether derivatives using hypervalent iodine(Ⅲ) reagents, Tetrahedron 57 (2001) 345-352.

    12. [12]

      [12] H. Hamamoto, G. Anilkumar, H. Tohma, et al., A novel and useful oxidative intramolecular coupling reaction of phenol ether derivatives on treatment with a combination of hypervalent iodine(Ⅲ) reagent and heteropoly acid, Chem. Eur. J. 8 (2002) 5377-5383.

    13. [13]

      [13] L. Shi, Y.J. Kim, D.Y. Gin, C2-acyloxyglycosylation with glycal donors, J. Am. Chem. Soc. 123 (2001) 6939-6940.

    14. [14]

      [14] J. Barluenga, M. Maro-Arias, F. Gonzá lez-Bobes, et al., Reaction of alkenes with hydrogen peroxide and sodium iodide: a nonenzymatic biogenic-like approach to iodohydrins, Chem. Eur. J. 10 (2004) 1677-1682.

    15. [15]

      [15] K.C. Nicolaou, K. Sugita, P.S. Baran, et al., Iodine(V) reagents in organic synthesis. Part 1. Synthesis of polycyclic heterocycles via Dess Martin periodinane-mediated cascade cyclization: generality, scope, and mechanism of the reaction, J. Am. Chem. Soc. 124 (2002) 2212-2220.

    16. [16]

      [16] M.S. Yusubov, L.A. Drygunova, V.V. Zhdankin, 4,4-Bis(dichloroiodo)biphenyl and 3-(dichloroiodo)benzoic acid: new recyclable hypervalent iodine reagents for vicinal halomethoxylation of unsaturated compounds, Synthesis (2004) 2289-2292.

    17. [17]

      [17] V.G. Shukla, P.D. Salgaonkar, K.G. Akamanchi, Molecular-iodine-catalyzed onepot synthesis of 1,5-benzodiazepine derivatives under solvent-free conditions, Synlett (2005) 1337-1339.

    18. [18]

      [18] K.S. Feldman, D.B. Vidulova, Use of Stang's reagent, PhI(CN)OTf, to promote Pummerer-like oxidative cyclization of 2-(phenylthio)indoles, Tetrahedron Lett. 45 (2004) 5035-5037.

    19. [19]

      [19] M.W. Justik, G.F. Koser, Oxidative rearrangements of arylalkenes with [hydroxy(tosyloxy)iodo]benzene in 95% methanol: a general, regiospecific synthesis of a-aryl ketones, Tetrahedron Lett. 45 (2004) 6159-6163.

    20. [20]

      [20] L. Saikia, M. Rajesh, D. Srinivas, et al., Regiospecific oxyhalogenation of aromatics over SBA-15-supported nanoparticle group IV-VI metal oxides, Catal. Lett. 137 (2010) 190-201.

    21. [21]

      [21] D.C. Crans, J.J. Smee, E. Gaidamauskas, et al., The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds, Chem. Rev. 104 (2004) 849-902.

    22. [22]

      [22] A. Butler, J.N. Carter-Franklin, The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products, Nat. Prod. Rep. 21 (2004) 180-188.

    23. [23]

      [23] P.D. Nightingale, G. Malin, P.S. Liss, Production of chloroform and other lowmolecular-weight halocarbons by some species of macroalgae, Limnol. Oceanogr. 40 (1995) 680-689.

    24. [24]

      [24] G.A. Molander, O.A. Argintaru, I. Aron, et al., Nickel-catalyzed cross-coupling of potassium aryl and heteroaryltrifluoroborates with unactivated alkyl halides, Org. Lett. 12 (2010) 5783-5785.

    25. [25]

      [25] G.A. Molander, I. Shin, L. Jean-Gerard, Palladium-catalyzed Suzuki Miyaura cross-coupling reactions of enantiomerically enriched potassium b-trifluoroboratoamides with various aryl- and hetaryl chlorides, Org. Lett. 12 (2010) 4384-4387.

    26. [26]

      [26] S.D. Dreher, S.E. Lim, D.L. Sandrock, et al., Suzuki Miyaura cross-coupling reactions of primary alkyltrifluoroborates with aryl chlorides, J. Org. Chem. 74 (2009) 3626-3631.

    27. [27]

      [27] Y. Kuwahara, A. Zhang, H. Soma, et al., Photochemical molecular storage of Cl2, HCl, and COCl2: synthesis of organochlorine compounds, salts, ureas, and polycarbonate with photodecomposed chloroform, Org. Lett. 14 (2012) 3376-3379.

    28. [28]

      [28] Z.S. Zhou, X.H. He, An efficient and regioselective monobromination of electronrich aromatic compounds using catalytic hypervalent iodine(Ⅲ) reagent, Synthesis (2011) 207-209.

  • 加载中
    1. [1]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    2. [2]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    3. [3]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    4. [4]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    5. [5]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    8. [8]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    9. [9]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    10. [10]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    11. [11]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    12. [12]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    15. [15]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    16. [16]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    17. [17]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    18. [18]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    19. [19]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    20. [20]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

Metrics
  • PDF Downloads(0)
  • Abstract views(803)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return