Citation: Chun-Hua Diao, Zhe Xu, Min-Jie Guo, Xin Chen, Jing Liu, Zhi Fan. The structural analysis of the inclusion complex of β-cyclodextrin with m-nitrophenoxyacetic acid[J]. Chinese Chemical Letters, ;2013, 24(6): 487-490. shu

The structural analysis of the inclusion complex of β-cyclodextrin with m-nitrophenoxyacetic acid

  • Corresponding author: Zhi Fan, 
  • Received Date: 22 February 2013
    Available Online: 14 March 2013

  • The inclusion complex of β-cyclodextrin with m-nitrophenoxyacetic acid was studied by single crystal X-ray diffraction, 2D NMR spectroscopy and semi-empirical methods AM1. The crystallographic study shows that two β-cyclodextrins are held together by hydrogen bonds to form head-to-head dimers. The disordered guest molecule adjusts itself to attain the most stable accommodation into the cavity in which the nitro group is located at the dimer interface while the carboxyl group is buried in the primary hydroxyl groups of β-cyclodextrin. The guest inside the cavity is disordered over two sites and exhibits mobility. Moreover, 2D NMR spectroscopy and theoretical study show the same inclusion behavior. In comparison to the inclusion complex of β-cyclodextrin with p-nitrophenoxyacetic acid, the host-guest stoichiometries are different, i.e., 2:1 for m-nitrophenoxyacetic acid and 1:1 for p-nitrophenoxyacetic acid, while the inclusion orientation and the packing pattern of the host are similar in both complexes.
  • 加载中
    1. [1]

      [1] G. Wenz, Cyclodextrins as building blocks for supramolecular structures and functional units, Angew. Chem. Int. Ed. Engl. 33 (1994) 803-822.

    2. [2]

      [2] Y. Liu, Y.L. Zhao, H.Y. Zhang, H.B. Song, Polymerir rotaxane constructed from the inclusion complex of β-cyclodextrin and 4,4'-dipyridine by coordination with Ni(Ⅱ) ions, Angew. Chem. Int. Ed. 42 (2003) 3260-3263.

    3. [3]

      [3] Y. Liu, H. Wang, P. Liang, H.Y. Zhang, Water-soluble supramolecular fullerene assembly mediated by metallobridged β-cyclodextrins, Angew. Chem. Int. Ed. 43 (2004) 2690-2694.

    4. [4]

      [4] C.F. Ke, C. Yang, T. Mori, T. Wada, Y. Liu, Y. Inoue, Photocyclodimerization of 2-anthracenecarboxylate mediated by a nonsensitizing chiral metallo-supramolecular host, Angew. Chem. Int. Ed. 48 (2009) 6675-6677.

    5. [5]

      [5] L.L. Zhu, H. Yan, K.T. Nguyen, H. Tian, Y.L. Zhao, Sequential self-assembly for construction of Pt(Ⅱ)-bridged [3]rotaxanes, Chem. Commun. 48 (2012) 4290-4292.

    6. [6]

      [6] S.L. Xiao, D.M. Zhou, M. Yang, et al., Synthesis of two mono-deoxy-β-cyclodextrin derivatives as useful tools for confirming DIBAL-H promoted bis-de-O-methylation machanism, Chin. Chem. Lett. 23 (2012) 1315-1318.

    7. [7]

      [7] Y. Liu, Z.L. Yu, Y.M. Zhang, D.S. Guo, Y.P. Liu, Supramolecular architectures of bcyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation, J. Am. Chem. Soc. 130 (2008) 10431-10439.

    8. [8]

      [8] S. Monti, S. Sortino, Photoprocesses of photosensitizing drugs within cyclodextrin cavities, Chem. Soc. Rev. 31 (2002) 287-300.

    9. [9]

      [9] H. Yan, C. Teh, S. Sreejith, et al., Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo, Angew. Chem. Int. Ed. 51 (2012) 8373-8377.

    10. [10]

      [10] G. Clavier, P. Audebert, s-Tetrazines as building blocks for new functional molecules and molecular materials, Chem. Rev. 110 (2010) 3299-3314.

    11. [11]

      [11] Y. Liu, C.F. Ke, H.Y. Zhang, J. Cui, F. Ding, Complexation-induced transition of nanorod to network aggregates: alternate porphyrin and cyclodextrin arrays, J. Am. Chem. Soc. 130 (2008) 600-605.

    12. [12]

      [12] L.L. Zhu, H. Yan, Y.L. Zhao, Cyclodextrin-based [1] rotaxanes on gold nanoparticles, Int. J. Mol. Sci. 13 (2012) 10132-10142.

    13. [13]

      [13] S.H. Kim, T.K. Kim, G.S. Shin, et al., Enantioselective hydrolysis of insoluble (R, S)-ketoprofen ethyl ester in dispersed aqueous reaction system induced by chiral cyclodextrin, Biotechnol. Lett. 26 (2004) 965-969.

    14. [14]

      [14] L. Pu, Fluorescence of organic molecules in chiral recognition, Chem. Rev. 104 (2004) 1687-1716.

    15. [15]

      [15] C. Yang, C.F. Ke, W.T. Liang, et al., Dual supramolecular photochirogenesis: ultimate stereocontrol of photocyclodimerization by chiral scaffold and confining host, J. Am. Chem. Soc. 133 (2011) 13786-13789.

    16. [16]

      [16] E.J. Wang, G.Y. Chen, Crystal structure of β-cyclodextrin-4-chlorobenzoic acid complex: unusual C-Cl (interaction between 4-chlorobenzoic acids in β-cyclodextrin dimer, Chin. Chem. Lett. 22 (2011) 847-850.

    17. [17]

      [17] M.J. Guo, C.H. Diao, Z.L. Jing, et al., The structure of inclusion complex of β-cyclodextrin with p-nitrophenoxyacetic acid in solution and the solid state, J. Incl. Phenom. Macrocycl. Chem. 67 (2010) 393-398.

    18. [18]

      [18] A. Kokkinou, F. Tsorteki, M. Karpusas, et al., Study of the inclusion of the (R)- and (S)-camphor enantiomers in a-cyclodextrin, Carbohydr. Res. 345 (2010) 1034-1040.

    19. [19]

      [19] Y. Liu, R.Q. Zhong, H.Y. Zhang, H.B. Song, A unique tetramer of 4:5 β-cyclodextrinferrocene in the solid state, Chem. Commun. 17 (2005) 2211-2213.

    20. [20]

      [20] R. Rajamohan, S.K. Nayaki, M. Swaminathan, A study on host-guest complexation of 5-amino-2-mercaptobenzimidazole with β-cyclodextrin, J. Solut. Chem. 40 (2011) 803-817.

    21. [21]

      [21] M.R. Caira, E. De Vries, L.R. Nassimbeni, V.W. Jacewicz, Inclusion of the antidepressant paroxetine in β-cyclodextrin, J. Incl. Phenom. Macrocycl. Chem. 46 (2003) 37-42.

    22. [22]

      [22] T.J. Brett, S.C. Liu, P. Coppens, J.J. Stezowski, The 20 K structure of p-amino-p0-nitrobiphenyl in the non-constraining environment of its β-cyclodextrin inclusion complex, Chem. Commun. (1999) 551-552.

  • 加载中
    1. [1]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    2. [2]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    3. [3]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    4. [4]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    7. [7]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    8. [8]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    13. [13]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    14. [14]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    15. [15]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    16. [16]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    17. [17]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    18. [18]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    19. [19]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    20. [20]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

Metrics
  • PDF Downloads(0)
  • Abstract views(612)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return