Citation: Qing Liu, Guo-Ping Li, Dong-Jian Zhu, Lin Xue, Hua Jiang. Design of quinoline-based fluorescent probe for the ratiometric detection of cadmium in aqueous media[J]. Chinese Chemical Letters, ;2013, 24(6): 479-482. shu

Design of quinoline-based fluorescent probe for the ratiometric detection of cadmium in aqueous media

  • Corresponding author: Lin Xue,  Hua Jiang, 
  • Received Date: 17 February 2013
    Available Online: 25 March 2013

  • A new fluorescent probe, DQCd2, based on 4-piperidinoquinoline has been synthesized as a fluorescent probe for Cd2+. It can ratiometrically respond to Cd2+ in PBS buffer by a remarkable emission intensity enhancement (88-fold) and wavelength shift (70 nm).
  • 加载中
    1. [1]

      [1] L. Friberg, C.G. Elinder, T. Kjellstrom, Cadmium, World Health Organization, Geneva, Switzerland, 1992.

    2. [2]

      [2] (a) United States Environmental Protection Agency. http://water.epa.gov/drink.;

    3. [3]

      (b) World Health Organization, Geneva, Switzerland. http://www.who.int/ water_sanitation_health/dwq/chemicals/cadmium/en/.

    4. [4]

      [3] (a) J.P. Desvergne, A.W. Czarnik, Chemoprobes of Ion and Molecule Recognition, Kluwer, Dordrecht, 1997;

    5. [5]

      (b) B. Valeur, I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev. 205 (2000) 3-40;

    6. [6]

      (c) A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, et al., Signaling recognition events with fluorescent sensors and switches, Chem. Rev. 97 (1997) 1515-1566.

    7. [7]

      [4] (a) M. Choi, M. Kim, K.D. Lee, et al., A new reverse PET chemosensor and its chelatoselective aromatic cadmiation, Org. Lett. 3 (2001) 3455-3457;

    8. [8]

      (b) L. Prodi, M. Montalti, N. Zaccheroni, et al., Characterization of 5-chloro-8-methoxyquinoline appended diaza-18-crown-6 as a chemosensor for cadmium, Tetrahedron Lett. 42 (2001) 2941-2944;

    9. [9]

      (c) T. Gunnlaugsson, T.C. Lee, R. Parkesh, Cd (Ⅱ) sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors, Org. Lett. 5 (2003) 4065-4068;

    10. [10]

      (d) R.T. Bronson, D.J. Michaelis, R.D. Lamb, et al., Efficient immobilization of a cadmium chemosensor in a thin film: generation of a cadmium sensor prototype, Org. Lett. 7 (2005) 1105-1108;

    11. [11]

      (e) W. Liu, L. Xu, R. Sheng, et al., A water-soluble "switching on" fluorescent chemosensor of selectivity to Cd2+, Org. Lett. 9 (2007) 3829-3832;

    12. [12]

      (f) C. Lu, Z. Xu, J. Cui, R. Zhang, X. Qian, Ratiometric and highly selective fluorescent sensor for cadmium under physiological pH range: a new strategy to discriminate cadmium from zinc, J. Org. Chem. 72 (2007) 3554-3557;

    13. [13]

      (g) X. Peng, J. Du, J. Fan, et al., A selective fluorescent sensor for imaging Cd2+ in living cells, J. Am. Chem. Soc. 129 (2007) 1500-1501;

    14. [14]

      (h) X.X. Peng, W. Dou, J. Mao, et al., Design of a semirigid molecule as a selective fluorescent chemosensor for recognition of Cd (Ⅱ), Org. Lett. 10 (2008) 3653-3656;

    15. [15]

      (i) M. Soibinet, V. Souchon, I. Leray, B. Valeur, Rhod-5N as a fluorescent molecular sensor of cadmium (Ⅱ) ion, J. Fluoresc. 18 (2008) 1077-1082;

    16. [16]

      (j) G.M. cockrell, G. Zhang, D.G. Van Derveer, R.P. Thummel, R.D. Hancock, Enhanced metal ion selectivity of 2, 9-di-(pyrid-2-yl)-1, 10-phenanthroline, and its use as a fluorescent sensor for cadmium (Ⅱ), J. Am. Chem. Soc. 130 (2008) 1420-1430;

    17. [17]

      (k) M. Taki, M. Desaki, A. Ojida, et al., Fluorescence imaging of intracellular cadmium using a dual-excitation ratiometric chemosensor, J. Am. Chem. Soc. 130 (2008) 12564-12565;

    18. [18]

      (l) T. Cheng, Y. Xu, S. Zhang, et al., A highly sensitive and selective OFF-ON fluorescent sensor for cadmium in aqueous solution and living cell, J. Am. Chem. Soc. 130 (2008) 16160-16161;

    19. [19]

      (m) Y. Zhou, Y. Xiao, X. Qian, A highly selective Cd2+ sensor of naphthyridine: fluorescent enhancement and red-shift by the synergistic action of forming binuclear complex, Tetrahedron Lett. 49 (2008) 3380-3384;

    20. [20]

      (n) Y. Zhang, Y. Chen, Z. Li, N. Li, Y. Liu, Quinolinotriazole-β-cyclodextrin and its adamantanecarboxylic acid complex as efficient water-soluble fluorescent Cd2+ sensors, Bioorg. Med. Chem. 18 (2010) 1415-1420;

    21. [21]

      (o) M. Mameli, M.C. Aragoni, M. Arca, et al., A selective, nontoxic, OFF-ON fluorescent molecular sensor based on 8-hydroxyquinoline for probing Cd2+ in living cells, Chem. Eur. J. 16 (2010) 919-930;

    22. [22]

      (p) Z. Liu, C.Zhang,W.He,etal.,Ahighlysensitive ratiometricfluorescentprobeforCd2+ detection in aqueous solution and living cells, Chem. Commun. 46 (2010) 6138-6140;

    23. [23]

      (q) J.L.Wang,W.Y.Lin,W.L.Li,Single fluorescent probedisplaysadistinctresponseto Zn2+ and Cd2+, Chem. Eur. J. 18 (2012) 13629-13632.

    24. [24]

      [5] D. Dakternieks, Zinc and cadmium, Coord. Chem. Rev. 98 (1990) 279-294.

    25. [25]

      [6] (a) R.Y. Tsien, Fluorescence measurement and photochemical manipulation of cytosolic free calcium, Trends Neurosci. 11 (1988) 419-424;

    26. [26]

      (b) P. Carol, S. Sreejith, A. Ajayaghosh, Ratiometric and near-infraredmolecular probes for the detectionand imaging of zinc ions,Chem.AsianJ. 2(2007) 338-348.

    27. [27]

      [7] K.W. Dunn, S. Mayor, J.N. Myers, F.R. Maxfield, Applications of ratio fluorescence microscopy in the study of cell physiology, FASEB J. 8 (1994) 573-582.

    28. [28]

      [8] (a) L. Xue, G.P. Li, Q. Liu, et al., Ratiometric fluorescent sensor based on inhibition of resonance for detection of cadmium in aqueous solution and living cells, Inorg. Chem. 50 (2011) 3680-3690;

    29. [29]

      (b) H.H. Wang, L. Xue, H. Jiang, Ratiometric fluorescent sensor for silver ion and its resultant complex for iodide anion in aqueous solution, Org. Lett. 13 (2011) 3844-3847;

    30. [30]

      (c) L. Xue, G.P. Li, D.J. Zhu, Q. Liu, H. Jiang, Rational design of a ratiometric and targetable fluorescent probe for imaging lysosomal zinc ions, Inorg. Chem. 51 (2012) 10842-10849;

    31. [31]

      (d) L. Xue, G.P. Li, C.L. Yu, H. Jiang, A ratiometric and targetable fluorescent sensor for quantification of mitochondrial zinc ions, Chem. Eur. J. 18 (2012) 1050-1054.

    32. [32]

      [9] (a) T.Y. Cheng, Y.F. Xu, S.Y. Zhang, et al., A highly sensitive and selective OFF-ON fluorescent sensor for cadmium in aqueous solution and living cell, J. Am. Chem. Soc. 130 (2008) 16160-16161;

    33. [33]

      (b) Y.Y. Yang, T.Y. Cheng, W.P. Zhu, Y.F. Xu, X.H. Qian, Highly selective and sensitive near-infrared fluorescent sensors for cadmium in aqueous solution, Org. Lett. 13 (2011) 264-267;

    34. [34]

      (c) T.Y. Cheng, T. Wang, W.P. Zhu, et al., Red-emission fluorescent probe sensing cadmium and pyrophosphate selectively in aqueous solution, Org. Lett. 13 (2011) 3656-3659.

    35. [35]

      [10] J.N. Demas, G.A. Grosby, Measurement of photoluminescence quantum yields. Review, J. Phys. Chem. 75 (1971) 991-1024.

    36. [36]

      [11] (a) B.A. Wong, S. Friedle, S.J. Lippard, Solution and fluorescence properties of symmetric dipicolylamine-containing dichlorofluorescein-based Zn2+ sensors, J. Am. Chem. Soc. 131 (2009) 7142-7152;

    37. [37]

      (b) D. Buccella, J.A. Horowitz, S.J. Lippard, Understanding zinc quantification with existing and advanced ditopic fluorescent Zinpyr sensors, J. Am. Chem. Soc. 133 (2011) 4101-4114.

  • 加载中
    1. [1]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    2. [2]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    3. [3]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    4. [4]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    5. [5]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    6. [6]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    7. [7]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    8. [8]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    9. [9]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    12. [12]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    13. [13]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    14. [14]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    15. [15]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    16. [16]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    17. [17]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    18. [18]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    19. [19]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    20. [20]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

Metrics
  • PDF Downloads(0)
  • Abstract views(638)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return