Citation: Bing-Hui Wu, Hua-Yan Yang, Hua-Qi Huang, Guang-Xu Chen, Nan-Feng Zheng. Solvent effect on the synthesis of monodisperse amine-capped Au nanoparticles[J]. Chinese Chemical Letters, ;2013, 24(6): 457-462. shu

Solvent effect on the synthesis of monodisperse amine-capped Au nanoparticles

  • Corresponding author: Nan-Feng Zheng, 
  • Received Date: 23 February 2013
    Available Online: 19 March 2013

  • A remarkable solvent effect in a single-phase synthesis of monodisperse amine-capped Au nanoparticles is demonstrated. Oleylamine-capped Au nanoparticles were prepared via the reduction of HAuCl4 by an amine-borane complex in the presence of oleylamine in an organic solvent. When linear or planar hydrocarbon (e.g., n-hexane, n-octane, 1-octadecylene, benzene, and toluene) was used as the solvent, high-quality monodisperse Au nanoparticles with tunable sizes were obtained. However, Au nanoparticles with poor size dispersity were obtained when tetralin, chloroform or cyclohexane was used as the solvent. The revealed solvent effect allows the controlled synthesis of monodisperse Au nanoparticles with tunable size of 3-10 nm.
  • 加载中
    1. [1]

      [1] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2003) 293-346.

    2. [2]

      [2] M.R. Jones, K.D. Osberg, R.J. Macfarlane, M.R. Langille, C.A. Mirkin, Templated techniques for the synthesis and assembly of plasmonic nanostructures, Chem. Rev. 111 (2011) 3736-3827.

    3. [3]

      [3] C.J. Jia, F. Schuth, Colloidal metal nanoparticles as a component of designed catalyst, Phys. Chem. Chem. Phys. 13 (2011) 2457-2487.

    4. [4]

      [4] M. Comotti, W.C. Li, B. Spliethoff, F. Schuth, Support effect in high activity gold catalysts for CO oxidation, J. Am. Chem. Soc. 128 (2006) 917-924.

    5. [5]

      [5] J.F. Liu, W. Chen, X.W. Liu, K.B. Zhou, Y.D. Li, Au/LaVO4 nanocomposite: preparation, characterization, and catalytic activity for CO oxidation, Nano Res. 1 (2008) 46-55.

    6. [6]

      [6] B.H. Wu, H. Zhang, C. Chen, S.C. Lin, N.F. Zheng, Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation, Nano Res. 2 (2009) 975-983.

    7. [7]

      [7] Y.M. Liu, H. Tsunoyama, T. Akita, S.H. Xie, T. Tsukuda, Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: size effect in the sub-2 nm regime, ACS Catal. 1 (2010) 2-6.

    8. [8]

      [8] H.Y. Fan, K. Yang, D.M. Boye, et al., Self-assembly of ordered, robust, threedimensional gold nanocrystal/silica arrays, Science 304 (2004) 567-571.

    9. [9]

      [9] E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. O'Brien, C.B. Murray, Structural diversity in binary nanoparticle superlattices, Nature 439 (2006) 55-59.

    10. [10]

      [10] A.M. Kalsin, M. Fialkowski, M. Paszewski, S.K. Smoukov, K.J.M. Bishop, B.A. Grzybowski, Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice, Science 312 (2006) 420-424.

    11. [11]

      [11] R.J. Macfarlane, B. Lee, M.R. Jones, et al., Nanoparticle superlattice engineering with DNA, Science 334 (2011) 204-208.

    12. [12]

      [12] X.C. Ye, J. Chen, C.B. Murray, Polymorphism in self-assembled AB6 binary nanocrystal superlattices, J. Am. Chem. Soc. 133 (2011) 2613-2620.

    13. [13]

      [13] M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiolderivatised gold nanoparticles in a two-phase liquid-liquid system, J. Chem. Soc., Chem. Commun. (1994) 801-802.

    14. [14]

      [14] S. Stoeva, K.J. Klabunde, C.M. Sorensen, I. Dragieva, Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures, J. Am. Chem. Soc. 124 (2002) 2305-2311.

    15. [15]

      [15] X.G. Peng, N.R. Jana, Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals, J. Am. Chem. Soc. 125 (2003) 14280-14281.

    16. [16]

      [16] I. Hussain, S. Graham, Z.X. Wang, et al., Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1-4 nm range using polymeric stabilizers, J. Am. Chem. Soc. 127 (2005) 16398-16399.

    17. [17]

      [17] N.F. Zheng, J. Fan, G.D. Stucky, One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals, J. Am. Chem. Soc. 128 (2006) 6550-6551.

    18. [18]

      [18] S. Peng, Y.M. Lee, C. Wang, et al., A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation, Nano Res. 1 (2008) 229-234.

    19. [19]

      [19] C.M. Shen, C. Hui, T.Z. Yang, et al., Monodisperse noble-metal nanoparticles and their surface enhanced raman scattering properties, Chem. Mater. 20 (2008) 6939-6944.

    20. [20]

      [20] X. Huang, X. Zhou, S. Wu, et al., Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodots to orderly patterned Au nanodot chains, Small 6 (2010) 513-516.

    21. [21]

      [21] A. Sugie, T. Somete, K. Kanie, A. Muramatsu, A. Mori, Triethylsilane as a mild and efficient reducing agent for the preparation of alkanethiol-capped gold nanoparticles, Chem. Commun. (2008) 3882-3884.

    22. [22]

      [22] X.M. Hou, X.L. Zhang, S.T. Chen, et al., Size-controlled synthesis of Au nanoparticles and nanowires and their application as SERS substrates, Colloids Surf. A 384 (2011) 345-351.

    23. [23]

      [23] J. Song, D. Kim, D. Lee, Size control in the synthesis of 1-6 nm gold nanoparticles via solvent-controlled nucleation, Langmuir 27 (2011) 13854-13860.

    24. [24]

      [24] B.H. Wu, H.Q. Huang, J. Yang, N.F. Zheng, G. Fu, Selective hydrogenation of α,β-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals, Angew. Chem. Int. Ed. 51 (2012) 3440-3443.

  • 加载中
    1. [1]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    2. [2]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    3. [3]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    4. [4]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    5. [5]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    6. [6]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    7. [7]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    8. [8]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    9. [9]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    10. [10]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199

    11. [11]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    12. [12]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    13. [13]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    14. [14]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    15. [15]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    16. [16]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    17. [17]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    18. [18]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

Metrics
  • PDF Downloads(0)
  • Abstract views(654)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return