Citation: Lan Yu, Qi Wang, Lu Dai, Wei-Ying Li, Rong Chen, Mian HR Mahmood, Hai-Yang Liu, Chi-Kwong Chang. Solvent effects on oxygen atom transfer reaction between manganese(V)-oxo corrole and alkene[J]. Chinese Chemical Letters, ;2013, 24(6): 447-449. shu

Solvent effects on oxygen atom transfer reaction between manganese(V)-oxo corrole and alkene

  • Corresponding author: Hai-Yang Liu,  Chi-Kwong Chang, 
  • Received Date: 16 January 2013
    Available Online: 3 March 2013

  • -first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo (F5CMn(V)-oxo), 5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo (F10CMn(V)-oxo), 5,15-bis(phenyl)-10-(pentafluorophenyl)corrole Mn(V)-oxo (F5CMn(V)-oxo) and 5,10,15-tris(phenyl)corrole Mn(V)-oxo (F0CMn(V)-oxo) with a series of alkene substrates in different solvents were determined by UV-vis spectroscopy. The results indicated that the oxygen atom transfer pathway between Mn(V)-oxo corrole and alkene is solvent-dependent.
  • 加载中
    1. [1]

      [1] J. McMaster, C.D. Garner, E.I. Stiefel, Hydrogen, carbon, and sulfur metabolim, in: I. Bertini, H.B. Gary, E.I. Stiefel, et al. (Eds.), Biological Inorganic Chemistry, Structure and Reactivity, University Science Books, Sausalito, California, 2007, pp. 443-555.

    2. [2]

      [2] Y. Mishina, C. He, Oxidative dealkylation DNA repair mediated by the mononuclear non-heme iron AlkB proteins, J. Inorg. Biochem. 100 (2006) 670-678.

    3. [3]

      [3] M. Dekker, Metals ions in biological system, in: A. Sigel, H. Sigel (Eds.), Molybdenum and Tungsten: Their Roles in Biological Processes, vol. 39, CRC Press Inc., New York, 2002.

    4. [4]

      [4] K.A. Prokop, H.M. Neu, S.P. de Visser, et al., A manganese(V)-oxo β-cation radical complex: influence of one-electron oxidation on oxygen-atom transfer, J. Am. Chem. Soc. 133 (2011) 15874-15877.

    5. [5]

      [5] C. Erben, S. Will, K.M. Kadish, Metallocorroles: molecular structure, spectroscopy and electronic states, in: K.M. Kadish, K.M. Smith, R. Guilard (Eds.), The Porphyrin Handbook, vol. 2, Academic Press Inc., San Diego, CA, 2000, pp. 233-295.

    6. [6]

      [6] R. Zhang, M. Newcomb, Laser flash photolysis formation and direct kinetic studies of manganese(V)-oxo porphyrin intermediates, J. Am. Chem. Soc. 125 (2003) 12418-12419.

    7. [7]

      [7] Z. Gross, G. Golubkov, L. Simkhovich, Epoxidation catalysis by a manganese corrole and isolation of an oxomanganese(V) corrole, Angew. Chem. Int. Ed. 39 (2000) 4045-4047.

    8. [8]

      [8] R. Zhang, D.N. Harishchandra, N. Newcomb, Laser flash photolysis generation and kinetic studies of corrole-manganese(v)-oxo intermediates, Chem. Eur. J. 11 (2005) 5713-5720.

    9. [9]

      [9] H.Y. Liu, T.S. Lai, L.L. Yeung, et al., First synthesis of perfluorinated corrole and its Mn≡O complex, Org. Lett. 5 (2003) 617-620.

    10. [10]

      [10] H.Y. Liu, H. Zhou, L.Y. Liu, et al., The effect of axial ligand on the reactivity of oxomanganese(V) corrole, Chem. Lett. 36 (2007) 274-275.

    11. [11]

      [11] H.Y. Liu, F. Yam, Y.T. Xie, et al., A bulky bis-pocket manganese(V)-oxo corrole complex: observation of oxygen atom transfer between triply bonded MnV≡O and alkene, J. Am. Chem. Soc. 131 (2009) 12890-12891.

    12. [12]

      [12] C. Zhu, J. Liang, B. Wang, et al., Significant effect of spin flip on the oxygen atom transfer reaction from (oxo)manganese(v) corroles to thioanisole: insights from density functional calculations, Phys. Chem. Chem. Phys. 14 (2012) 12800-12806.

    13. [13]

      [13] T. Michel, D. Betz, M. Cokoja, et al., Epoxidation of alpha-pinene catalyzed by methyltrioxorheniurn(Ⅶ): influence of additives, oxidants and solvents, J. Mol. Catal. A: Chem. 340 (2011) 9-14.

    14. [14]

      [14] R.S. Czernuszewicz, V. Mody, A. Czader, et al., Why the chromyl bond is stronger than the perchromyl bond in high-valent oxochromium(Ⅳ,Ⅴ) complexes of tris(pentafluorophenyl)corrole, J. Am. Chem. Soc. 131 (2009) 14214-14215.

    15. [15]

      [15] V.V. Mody, M.B. Fitzpatrick, S.S. Zabaneh, et al., Solvent effects on the electronic and vibrational properties of high-valent oxomolybdenum(V) 5,10,15-triphenylcorrole probed by UV-visible and resonance Raman spectroscopy, J. Porphyrins Phthalocyanines 13 (2009) 1040-1052.

    16. [16]

      [16] P. Lian, H.Y. Liu, L. Chen, et al., Demetalation of manganese corroles, Chin. J. Inorg. Chem. 25 (2009) 1420-1425.

    17. [17]

      [17] H.Y. Liu, M.H.R. Mahmood, S.X. Qiu, C.K. Chang, Recent developments in manganese corrole chemistry, Coordin. Chem. Rev. 257 (2013) 1306-1333.

  • 加载中
    1. [1]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    2. [2]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199

    3. [3]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    4. [4]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    5. [5]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    6. [6]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    7. [7]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    8. [8]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    9. [9]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    10. [10]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    11. [11]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    12. [12]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    13. [13]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    14. [14]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    15. [15]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    16. [16]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    17. [17]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    18. [18]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

Metrics
  • PDF Downloads(0)
  • Abstract views(719)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return