Citation: Lei Wang, Li-Li Li, Horse L. Ma, Hao Wang. Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery[J]. Chinese Chemical Letters, ;2013, 24(05): 351-358.
-
Inspired by sophisticated biological structures and their physiological processes, supramolecular chemistry has been developed for understanding and mimicking the behaviors of natural species. Through spontaneous self-assembly of functional building blocks, we are able to control the structures and regulate the functions of resulting supramolecular assemblies. Up to now, numerous functional supramolecular assemblies have been constructed and successfully employed as molecular devices, machines and biological diagnostic platforms. This review will focus on molecular structures of functional molecular building blocks and their assembled superstructures for biological detection and delivery.
-
Keywords:
- Supramolecular,
- Assembly,
- Biological detection,
- Drug delivery
-
-
[1]
[1] K. Mizusawa, Y. Ishida, Y. Takaoka, et al., Disassembly-driven turn-on fluorescent nanoprobes for selective protein detection, J. Am. Chem. Soc. 132 (2010) 7291-7293.
-
[2]
[2] K. Mizusawa, Y. Takaoka, I. Hamachi, Specific cell surface protein imaging by extended self-assembling fluorescent turn-on nanoprobes, J. Am. Chem. Soc. 134 (2012) 13386-13395.
-
[3]
[3] Y. Takaoka, T. Sakamoto, S. Tsukiji, et al., Self-assembling nanoprobes that display off/on 19F nuclear magnetic resonance signals for protein detection and imaging, Nat. Chem. 1 (2009) 557-561.
-
[4]
[4] Y. Takaoka, K. Kiminami, K. Mizusawa, et al., Systematic study of protein detection mechanism of self-assembling 19F NMR/MRI nanoprobes toward rational design and improved sensitivity, J. Am. Chem. Soc. 133 (2011) 11725-11731.
-
[5]
[5] J.S. Shen, D.H. Li, Y.B. Ruan, et al., Supramolecular aggregation/disaggregationbased molecular sensing: a review focused on investigations from China, Luminescence 27 (2012) 317-327.
-
[6]
[6] B. Wang, C. Yu, Fluorescence turn-on detection of a protein through the reduced aggregation of a perylene probe, Angew. Chem. Int. Ed. 49 (2010) 1485-1488.
-
[7]
[7] M.C.L. Yeung, K.M.C. Wong, Y.K.T. Tsang, et al., Aptamer-induced self-assembly of a NIR-emissive platinum(Ⅱ) terpyridyl complex for label-and immobilizationfree detection of lysozyme and thrombin, Chem. Commun. 46 (2010) 7709-7711.
-
[8]
[8] J. Liu, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission of silole molecules and polymers: fundamental and applications, J. Inorg. Organomet. Polym. 19 (2009) 249-285.
-
[9]
[9] Y. Hong, C. Feng, Y. Yu, et al., Quantitation, visualization, and monitoring of conformational transitions of human serum albumin by a tetraphenylethene derivative with aggregation-induced emission characteristics, Anal. Chem. 82 (2010) 7035-7043.
-
[10]
[10] M. Wang, X. Gu, G. Zhang, D. Zhang, D. Zhu, Convenient and continuous fluorometric assay method for acetylcholinesterase and inhibitor screening based on the aggregation-induced emission, Anal. Chem. 81 (2009) 4444-4449.
-
[11]
[11] K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing, Chem. Rev. 112 (2012) 2739-2779.
-
[12]
[12] S.S. Agasti, S. Rana, M.H. Park, et al., Nanoparticles for detection and diagnosis, Adv. Drug Del. Rev. 62 (2010) 316-328.
-
[13]
[13] D.A. Giljohann, D.S. Seferos, W.L. Daniel, et al., Gold nanoparticles for biology and medicine, Angew. Chem. Int. Ed. 49 (2010) 3280-3294.
-
[14]
[14] H. Otsuka, Y. Akiyama, Y. Nagasaki, K. Kataoka, Quantitative and reversible lectininduced association of gold nanoparticles modified with a-lactosyl-v-mercaptopoly( ethylene glycol), J. Am. Chem. Soc. 123 (2001) 8226-8230.
-
[15]
[15] S. Takae, Y. Akiyama, H. Otsuka, et al., Ligand density effect on biorecognition by pegylated gold nanoparticles: regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered peg strands on gold surface, Biomacromolecules 6 (2005) 818-824.
-
[16]
[16] C.S. Tsai, T.B. Yu, C.T. Chen, Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions, Chem. Commun. 41 (2005) 4273-4275.
-
[17]
[17] A. Laromaine, L. Koh, M. Murugesan, R.V. Ulijn, M.M. Stevens, Protease-triggered dispersion of nanoparticle assemblies, J. Am. Chem. Soc. 129 (2007) 4156-4157.
-
[18]
[18] X. Xu, M.S. Han, C.A. Mirkin, A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition, Angew. Chem. Int. Ed. 46 (2007) 3468-3470.
-
[19]
[19] C.C. You, O.R. Miranda, B. Gider, et al., Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’sensors, Nat. Nanotechnol. 2 (2007) 318-323.
-
[20]
[20] R. Zhang, D. Tang, P. Lu, et al., Nucleic acid-induced aggregation and pyrene excimer formation, Org. Lett. 11 (2009) 4302-4305.
-
[21]
[21] R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science 277 (1997) 1078-1081.
-
[22]
[22] C.S. Thaxton, D.G. Georganopoulou, C.A. Mirkin, Gold nanoparticle probes for the detection of nucleic acid targets, Clin. Chim. Acta 363 (2006) 120-126.
-
[23]
[23] H. Zhong, R. Zhang, H. Zhang, S. Zhang, Modular design of an ultrahigh-intensity nanoparticle probe for cancer cell imaging and rapid visual detection of nucleic acids, Chem. Commun. 48 (2012) 6277-6279.
-
[24]
[24] J. Liu, Y. Pang, W. Huang, et al., Self-assembly of phospholipid-analogous hyperbranched polymers nanomicelles for drug delivery, Biomaterials 31 (2010) 1334-1341.
-
[25]
[25] X. Zhai, W. Huang, J. Liu, et al., Micelles from amphiphilic block copolyphosphates for drug delivery, Macromol. Biosci. 11 (2011) 1603-1610.
-
[26]
[26] Y. Chen, Y. Pang, J. Wu, et al., Controlling the particle size of interpolymer complexes through host-guest interaction for drug delivery, Langmuir 26 (2010) 9011-9016.
-
[27]
[27] C. Tu, L. Zhu, P. Li, et al., Supramolecular polymeric micelles by the host-guest interaction of star-like calix[4]arene and chlorin e6 for photodynamic therapy, Chem. Commun. 47 (2011) 6063-6065.
-
[28]
[28] J. Liu, Y. Pang, W. Huang, et al., Bioreducible micelles self-assembled from amphiphilic hyperbranched multiarm copolymer for glutathione-mediated intracellular drug delivery, Biomacromolecules 12 (2011) 1567-1577.
-
[29]
[29] Y. Jin, L. Song, Y. Su, et al., Oxime linkage: a robust tool for the design of pHsensitive polymeric drug carriers, Biomacromolecules 12 (2011) 3460-3468.
-
[30]
[30] C. Wang, Q. Chen, Z. Wang, X. Zhang, An enzyme-responsive polymeric superamphiphile, Angew. Chem. Int. Ed. 49 (2010) 8612-8615.
-
[31]
[31] G. Wang, C. Wang, Z. Wang, X. Zhang, Bolaform superamphiphile based on a dynamic covalent bond and its self-assembly in water, Langmuir 27 (2011) 12375-12380.
-
[32]
[32] J.B. Matson, S.I. Stupp, Drug release from hydrazone-containing peptide amphiphiles, Chem. Commun. 47 (2011) 7962-7964.
-
[33]
[33] M.J. Webber, J.B. Matson, V.K. Tamboli, S.I. Stupp, Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response, Biomaterials 33 (2012) 6823-6832.
-
[34]
[34] G. Liang, Z. Yang, R. Zhang, et al., Supramolecular hydrogel of ad-amino acid dipeptide for controlled drug release in vivo, Langmuir 25 (2009) 8419-8422.
-
[35]
[35] Y. Zhang, Y. Kuang, Y. Gao, B. Xu, Versatile small-molecule motifs for selfassembly in water and the formation of biofunctional supramolecular hydrogels, Langmuir 27 (2011) 529-537.
-
[36]
[36] K. Wang, D.S. Guo, X. Wang, Y. Liu, Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin, ACS Nano 5 (2011) 2880-2894.
-
[37]
[37] D.S. Guo, K. Wang, Y.X. Wang, Y. Liu, Cholinesterase-responsive supramolecular vesicle, J. Am. Chem. Soc. 134 (2012) 10244-10250.
-
[38]
[38] Y.L. Sun, B.J. Yang, S.X. Zhang, Y.W. Yang, Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve, Chemistry 18 (2012) 9212-9216.
-
[39]
[39] Y.W. Yang, Towards biocompatible nanovalves based on mesoporous silica nanoparticles, Med. Chem. Commun. 2 (2011) 1033.
-
[40]
[40] Q. Zhang, F. Liu, K.T. Nguyen, et al., Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery, Adv. Funct. Mater. 22 (2012) 5144-5156.
-
[41]
[41] C. Wang, Z. Li, D. Cao, et al., Stimulated release of size-selected cargos in succession from mesoporous silica nanoparticles, Angew. Chem. Int. Ed. 51 (2012) 5460-5465.
-
[42]
[42] H. Yan, C. Teh, S. Sreejith, et al., Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo, Angew. Chem. Int. Ed. 51 (2012) 8373-8377.
-
[43]
[43] J.H. Xu, F.P. Gao, X.F. Liu, et al., Supramolecular gelatin nanoparticles as matrix metalloproteinase responsive cancer cell imaging probes, Chem. Commun. (2013), http://dx.doi.org/10.1039/C3CC00304C.
-
[44]
[44] L.L. Li, H. Wang, Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo, Adv. Healthcare Mater. 10 (2013), http://dx.doi.org/10.1002/adhm.201300051.
-
[45]
[45] H. Wang, S. Wang, H. Su, et al., A supramolecular approach for preparation of sizecontrolled nanoparticles, Angew. Chem. Int. Ed. 48 (2009) 4344-4348.
-
[46]
[46] H. Wang, K.J. Chen, S. Wang, et al., A small library of DNA-encapsulated supramolecular nanoparticles for targeted gene delivery, Chem. Commun. 46 (2010) 1851-1853.
-
[47]
[47] H. Wang, K. Liu, K.J. Chen, et al., A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library, ACS Nano 4 (2010) 6235-6243.
-
[48]
[48] J. Liu, W. Huang, Y. Pang, et al., Molecular self-assembly of a homopolymer: an alternative to fabricate drug-delivery platforms for cancer therapy, Angew. Chem. Int. Ed. 50 (2011) 9162-9166.
-
[49]
[49] R. Dong, L. Zhou, J. Wu, et al., A supramolecular approach to the preparation of charge-tunable dendritic polycations for efficient gene delivery, Chem. Commun. 47 (2011) 5473-5475.
-
[50]
[50] Y. Chen, L. Zhou, Y. Pang, et al., Photoluminescent hyperbranched poly(amido amine) containing beta-cyclodextrin as a nonviral gene delivery vector, Bioconjugate Chem. 22 (2011) 1162-1170.
-
[51]
[51] W.J. Yi, Z.H. Feng, Q.F. Zhang, et al., Diol glycidyl ether-bridged cyclens: preparation and their applications in gene delivery, Org. Biomol. Chem. 9 (2011) 2413-2421.
-
[52]
[52] Q.D.Huang,W.J.Ou, H.Chen, et al.,Novel cationic lipidspossessingprotonatedcyclen and imidazoliumsalt for gene delivery, Eur. J.Work Org. Psychol.78 (2011) 326-335.
-
[53]
[53] V. Percec, A.E. Dulcey, V.S.K. Balagurusamy, et al., Self-assembly of amphiphilic dendritic dipeptides into helical pores, Nature 430 (2004) 764-768.
-
[54]
[54] Y. LeDuc, M. Michau, A. Gilles, et al., Imidazole-quartet water and proton dipolar channels, Angew. Chem. Int. Ed. 50 (2011) 11366-11372.
-
[55]
[55] X.B. Hu, Z. Chen, G. Tang, J.L. Hou, Z.T. Li, Single-molecular artificial transmembrane water channels, J. Am. Chem. Soc. 134 (2012) 8384-8387.
-
[56]
[56] G. Das, S. Matile, Transmembrane pores formed by synthetic p-octiphenyl bbarrels with internal carboxylate clusters: regulation of ion transport by ph and Mg2+-complexed 8-aminonaphthalene-1,3,6-trisulfonate, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 5183-5188.
-
[57]
[57] L. Chen, W. Si, L. Zhang, et al., Chiral selective transmembrane transport of amino acids through artificial channels, J. Am. Chem. Soc. 135 (2013) 2152-2155.
-
[58]
[58] H. Cho, L. Widanapathirana, Y. Zhao, Water-templated transmembrane nanopores from shape-persistent oligocholate macrocycles, J. Am. Chem. Soc. 133 (2010) 141-147.
-
[59]
[59] S. Zhang, Y. Zhao, Oligocholate foldamers as carriers for hydrophilic molecules across lipid bilayers, Chem. Eur. J. 17 (2011) 12444-12451.
-
[1]
-
-
[1]
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
-
[2]
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
-
[3]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[4]
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
-
[5]
Makhloufi Zoulikha , Zhongjian Chen , Jun Wu , Wei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225
-
[6]
Jing Zhang , Charles Wang , Yaoyao Zhang , Haining Xia , Yujuan Wang , Kun Ma , Junfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420
-
[7]
Tong Tong , Lezong Chen , Siying Wu , Zhong Cao , Yuanbin Song , Jun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689
-
[8]
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
-
[9]
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
-
[10]
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
-
[11]
Lihang Wang , Mary Li Javier , Chunshan Luo , Tingsheng Lu , Shudan Yao , Bing Qiu , Yun Wang , Yunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591
-
[12]
Yong-Dan Zhao , Yidan Wang , Rongrong Wang , Lina Chen , Hengtong Zuo , Xi Wang , Jihong Qiang , Geng Wang , Qingxia Li , Canqi Ping , Shuqiu Zhang , Hao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929
-
[13]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[14]
Yuanzheng Wang , Chen Zhang , Shuyan Han , Xiaoli Kong , Changyun Quan , Jun Wu , Wei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578
-
[15]
Yinglan Yu , Sajid Hussain , Jianping Qi , Lei Luo , Xuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673
-
[16]
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
-
[17]
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
-
[18]
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
-
[19]
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
-
[20]
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(598)
- HTML views(8)