Citation: Lei Wang, Li-Li Li, Horse L. Ma, Hao Wang. Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery[J]. Chinese Chemical Letters, ;2013, 24(05): 351-358. shu

Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery

  • Corresponding author: Hao Wang, 
  • Received Date: 4 January 2013
    Available Online: 5 March 2013

  • Inspired by sophisticated biological structures and their physiological processes, supramolecular chemistry has been developed for understanding and mimicking the behaviors of natural species. Through spontaneous self-assembly of functional building blocks, we are able to control the structures and regulate the functions of resulting supramolecular assemblies. Up to now, numerous functional supramolecular assemblies have been constructed and successfully employed as molecular devices, machines and biological diagnostic platforms. This review will focus on molecular structures of functional molecular building blocks and their assembled superstructures for biological detection and delivery.
  • 加载中
    1. [1]

      [1] K. Mizusawa, Y. Ishida, Y. Takaoka, et al., Disassembly-driven turn-on fluorescent nanoprobes for selective protein detection, J. Am. Chem. Soc. 132 (2010) 7291-7293.

    2. [2]

      [2] K. Mizusawa, Y. Takaoka, I. Hamachi, Specific cell surface protein imaging by extended self-assembling fluorescent turn-on nanoprobes, J. Am. Chem. Soc. 134 (2012) 13386-13395.

    3. [3]

      [3] Y. Takaoka, T. Sakamoto, S. Tsukiji, et al., Self-assembling nanoprobes that display off/on 19F nuclear magnetic resonance signals for protein detection and imaging, Nat. Chem. 1 (2009) 557-561.

    4. [4]

      [4] Y. Takaoka, K. Kiminami, K. Mizusawa, et al., Systematic study of protein detection mechanism of self-assembling 19F NMR/MRI nanoprobes toward rational design and improved sensitivity, J. Am. Chem. Soc. 133 (2011) 11725-11731.

    5. [5]

      [5] J.S. Shen, D.H. Li, Y.B. Ruan, et al., Supramolecular aggregation/disaggregationbased molecular sensing: a review focused on investigations from China, Luminescence 27 (2012) 317-327.

    6. [6]

      [6] B. Wang, C. Yu, Fluorescence turn-on detection of a protein through the reduced aggregation of a perylene probe, Angew. Chem. Int. Ed. 49 (2010) 1485-1488.

    7. [7]

      [7] M.C.L. Yeung, K.M.C. Wong, Y.K.T. Tsang, et al., Aptamer-induced self-assembly of a NIR-emissive platinum(Ⅱ) terpyridyl complex for label-and immobilizationfree detection of lysozyme and thrombin, Chem. Commun. 46 (2010) 7709-7711.

    8. [8]

      [8] J. Liu, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission of silole molecules and polymers: fundamental and applications, J. Inorg. Organomet. Polym. 19 (2009) 249-285.

    9. [9]

      [9] Y. Hong, C. Feng, Y. Yu, et al., Quantitation, visualization, and monitoring of conformational transitions of human serum albumin by a tetraphenylethene derivative with aggregation-induced emission characteristics, Anal. Chem. 82 (2010) 7035-7043.

    10. [10]

      [10] M. Wang, X. Gu, G. Zhang, D. Zhang, D. Zhu, Convenient and continuous fluorometric assay method for acetylcholinesterase and inhibitor screening based on the aggregation-induced emission, Anal. Chem. 81 (2009) 4444-4449.

    11. [11]

      [11] K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing, Chem. Rev. 112 (2012) 2739-2779.

    12. [12]

      [12] S.S. Agasti, S. Rana, M.H. Park, et al., Nanoparticles for detection and diagnosis, Adv. Drug Del. Rev. 62 (2010) 316-328.

    13. [13]

      [13] D.A. Giljohann, D.S. Seferos, W.L. Daniel, et al., Gold nanoparticles for biology and medicine, Angew. Chem. Int. Ed. 49 (2010) 3280-3294.

    14. [14]

      [14] H. Otsuka, Y. Akiyama, Y. Nagasaki, K. Kataoka, Quantitative and reversible lectininduced association of gold nanoparticles modified with a-lactosyl-v-mercaptopoly( ethylene glycol), J. Am. Chem. Soc. 123 (2001) 8226-8230.

    15. [15]

      [15] S. Takae, Y. Akiyama, H. Otsuka, et al., Ligand density effect on biorecognition by pegylated gold nanoparticles: regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered peg strands on gold surface, Biomacromolecules 6 (2005) 818-824.

    16. [16]

      [16] C.S. Tsai, T.B. Yu, C.T. Chen, Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions, Chem. Commun. 41 (2005) 4273-4275.

    17. [17]

      [17] A. Laromaine, L. Koh, M. Murugesan, R.V. Ulijn, M.M. Stevens, Protease-triggered dispersion of nanoparticle assemblies, J. Am. Chem. Soc. 129 (2007) 4156-4157.

    18. [18]

      [18] X. Xu, M.S. Han, C.A. Mirkin, A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition, Angew. Chem. Int. Ed. 46 (2007) 3468-3470.

    19. [19]

      [19] C.C. You, O.R. Miranda, B. Gider, et al., Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’sensors, Nat. Nanotechnol. 2 (2007) 318-323.

    20. [20]

      [20] R. Zhang, D. Tang, P. Lu, et al., Nucleic acid-induced aggregation and pyrene excimer formation, Org. Lett. 11 (2009) 4302-4305.

    21. [21]

      [21] R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science 277 (1997) 1078-1081.

    22. [22]

      [22] C.S. Thaxton, D.G. Georganopoulou, C.A. Mirkin, Gold nanoparticle probes for the detection of nucleic acid targets, Clin. Chim. Acta 363 (2006) 120-126.

    23. [23]

      [23] H. Zhong, R. Zhang, H. Zhang, S. Zhang, Modular design of an ultrahigh-intensity nanoparticle probe for cancer cell imaging and rapid visual detection of nucleic acids, Chem. Commun. 48 (2012) 6277-6279.

    24. [24]

      [24] J. Liu, Y. Pang, W. Huang, et al., Self-assembly of phospholipid-analogous hyperbranched polymers nanomicelles for drug delivery, Biomaterials 31 (2010) 1334-1341.

    25. [25]

      [25] X. Zhai, W. Huang, J. Liu, et al., Micelles from amphiphilic block copolyphosphates for drug delivery, Macromol. Biosci. 11 (2011) 1603-1610.

    26. [26]

      [26] Y. Chen, Y. Pang, J. Wu, et al., Controlling the particle size of interpolymer complexes through host-guest interaction for drug delivery, Langmuir 26 (2010) 9011-9016.

    27. [27]

      [27] C. Tu, L. Zhu, P. Li, et al., Supramolecular polymeric micelles by the host-guest interaction of star-like calix[4]arene and chlorin e6 for photodynamic therapy, Chem. Commun. 47 (2011) 6063-6065.

    28. [28]

      [28] J. Liu, Y. Pang, W. Huang, et al., Bioreducible micelles self-assembled from amphiphilic hyperbranched multiarm copolymer for glutathione-mediated intracellular drug delivery, Biomacromolecules 12 (2011) 1567-1577.

    29. [29]

      [29] Y. Jin, L. Song, Y. Su, et al., Oxime linkage: a robust tool for the design of pHsensitive polymeric drug carriers, Biomacromolecules 12 (2011) 3460-3468.

    30. [30]

      [30] C. Wang, Q. Chen, Z. Wang, X. Zhang, An enzyme-responsive polymeric superamphiphile, Angew. Chem. Int. Ed. 49 (2010) 8612-8615.

    31. [31]

      [31] G. Wang, C. Wang, Z. Wang, X. Zhang, Bolaform superamphiphile based on a dynamic covalent bond and its self-assembly in water, Langmuir 27 (2011) 12375-12380.

    32. [32]

      [32] J.B. Matson, S.I. Stupp, Drug release from hydrazone-containing peptide amphiphiles, Chem. Commun. 47 (2011) 7962-7964.

    33. [33]

      [33] M.J. Webber, J.B. Matson, V.K. Tamboli, S.I. Stupp, Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response, Biomaterials 33 (2012) 6823-6832.

    34. [34]

      [34] G. Liang, Z. Yang, R. Zhang, et al., Supramolecular hydrogel of ad-amino acid dipeptide for controlled drug release in vivo, Langmuir 25 (2009) 8419-8422.

    35. [35]

      [35] Y. Zhang, Y. Kuang, Y. Gao, B. Xu, Versatile small-molecule motifs for selfassembly in water and the formation of biofunctional supramolecular hydrogels, Langmuir 27 (2011) 529-537.

    36. [36]

      [36] K. Wang, D.S. Guo, X. Wang, Y. Liu, Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin, ACS Nano 5 (2011) 2880-2894.

    37. [37]

      [37] D.S. Guo, K. Wang, Y.X. Wang, Y. Liu, Cholinesterase-responsive supramolecular vesicle, J. Am. Chem. Soc. 134 (2012) 10244-10250.

    38. [38]

      [38] Y.L. Sun, B.J. Yang, S.X. Zhang, Y.W. Yang, Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve, Chemistry 18 (2012) 9212-9216.

    39. [39]

      [39] Y.W. Yang, Towards biocompatible nanovalves based on mesoporous silica nanoparticles, Med. Chem. Commun. 2 (2011) 1033.

    40. [40]

      [40] Q. Zhang, F. Liu, K.T. Nguyen, et al., Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery, Adv. Funct. Mater. 22 (2012) 5144-5156.

    41. [41]

      [41] C. Wang, Z. Li, D. Cao, et al., Stimulated release of size-selected cargos in succession from mesoporous silica nanoparticles, Angew. Chem. Int. Ed. 51 (2012) 5460-5465.

    42. [42]

      [42] H. Yan, C. Teh, S. Sreejith, et al., Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo, Angew. Chem. Int. Ed. 51 (2012) 8373-8377.

    43. [43]

      [43] J.H. Xu, F.P. Gao, X.F. Liu, et al., Supramolecular gelatin nanoparticles as matrix metalloproteinase responsive cancer cell imaging probes, Chem. Commun. (2013), http://dx.doi.org/10.1039/C3CC00304C.

    44. [44]

      [44] L.L. Li, H. Wang, Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo, Adv. Healthcare Mater. 10 (2013), http://dx.doi.org/10.1002/adhm.201300051.

    45. [45]

      [45] H. Wang, S. Wang, H. Su, et al., A supramolecular approach for preparation of sizecontrolled nanoparticles, Angew. Chem. Int. Ed. 48 (2009) 4344-4348.

    46. [46]

      [46] H. Wang, K.J. Chen, S. Wang, et al., A small library of DNA-encapsulated supramolecular nanoparticles for targeted gene delivery, Chem. Commun. 46 (2010) 1851-1853.

    47. [47]

      [47] H. Wang, K. Liu, K.J. Chen, et al., A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library, ACS Nano 4 (2010) 6235-6243.

    48. [48]

      [48] J. Liu, W. Huang, Y. Pang, et al., Molecular self-assembly of a homopolymer: an alternative to fabricate drug-delivery platforms for cancer therapy, Angew. Chem. Int. Ed. 50 (2011) 9162-9166.

    49. [49]

      [49] R. Dong, L. Zhou, J. Wu, et al., A supramolecular approach to the preparation of charge-tunable dendritic polycations for efficient gene delivery, Chem. Commun. 47 (2011) 5473-5475.

    50. [50]

      [50] Y. Chen, L. Zhou, Y. Pang, et al., Photoluminescent hyperbranched poly(amido amine) containing beta-cyclodextrin as a nonviral gene delivery vector, Bioconjugate Chem. 22 (2011) 1162-1170.

    51. [51]

      [51] W.J. Yi, Z.H. Feng, Q.F. Zhang, et al., Diol glycidyl ether-bridged cyclens: preparation and their applications in gene delivery, Org. Biomol. Chem. 9 (2011) 2413-2421.

    52. [52]

      [52] Q.D.Huang,W.J.Ou, H.Chen, et al.,Novel cationic lipidspossessingprotonatedcyclen and imidazoliumsalt for gene delivery, Eur. J.Work Org. Psychol.78 (2011) 326-335.

    53. [53]

      [53] V. Percec, A.E. Dulcey, V.S.K. Balagurusamy, et al., Self-assembly of amphiphilic dendritic dipeptides into helical pores, Nature 430 (2004) 764-768.

    54. [54]

      [54] Y. LeDuc, M. Michau, A. Gilles, et al., Imidazole-quartet water and proton dipolar channels, Angew. Chem. Int. Ed. 50 (2011) 11366-11372.

    55. [55]

      [55] X.B. Hu, Z. Chen, G. Tang, J.L. Hou, Z.T. Li, Single-molecular artificial transmembrane water channels, J. Am. Chem. Soc. 134 (2012) 8384-8387.

    56. [56]

      [56] G. Das, S. Matile, Transmembrane pores formed by synthetic p-octiphenyl bbarrels with internal carboxylate clusters: regulation of ion transport by ph and Mg2+-complexed 8-aminonaphthalene-1,3,6-trisulfonate, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 5183-5188.

    57. [57]

      [57] L. Chen, W. Si, L. Zhang, et al., Chiral selective transmembrane transport of amino acids through artificial channels, J. Am. Chem. Soc. 135 (2013) 2152-2155.

    58. [58]

      [58] H. Cho, L. Widanapathirana, Y. Zhao, Water-templated transmembrane nanopores from shape-persistent oligocholate macrocycles, J. Am. Chem. Soc. 133 (2010) 141-147.

    59. [59]

      [59] S. Zhang, Y. Zhao, Oligocholate foldamers as carriers for hydrophilic molecules across lipid bilayers, Chem. Eur. J. 17 (2011) 12444-12451.

  • 加载中
    1. [1]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    2. [2]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    3. [3]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    4. [4]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    5. [5]

      Makhloufi ZoulikhaZhongjian ChenJun WuWei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225

    6. [6]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    7. [7]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    8. [8]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    9. [9]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    10. [10]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    11. [11]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    12. [12]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    13. [13]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    14. [14]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    15. [15]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    16. [16]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    17. [17]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    18. [18]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    19. [19]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    20. [20]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

Metrics
  • PDF Downloads(0)
  • Abstract views(598)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return