Citation: Yan-Wu Li, Yan Liu, Yun-Can Jia, Jian-Yong Yuan. A facile synthesis of the oxazolidinone antibacterial agent linezolid[J]. Chinese Chemical Letters, ;2013, 24(3): 230-232.
-
A facile synthetic route of linezolid 1 has been developed. Using commercially available (R)-epichlorohydrin as the starting material, 1 was obtained through a sequence of cyclization, substitution, a Goldberg coupling, aminolysis and acetylation reactions. The synthetic route is easy to perform and can be scaled up.
-
Keywords:
- Linezolid,
- Synthesis,
- Goldberg coupling reaction
-
-
[1]
[1] National Nosocomial Infections Surveillance (NNIS) System, National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, Am. J. Infect. Control. 32 (2004) 470-485.
-
[2]
[2] H. Goossens, European status of resistance in nosocomial infections, Chemotherapy 51 (2005) 177-181.
-
[3]
[3] L.B. Rice, Antimicrobial resistance in gram-positive bacteria, Am. J. Infect. Control. 34 (Suppl. 5) (2006) S11-S19.
-
[4]
[4] D.K. Hutchinson, Oxazolidinone antibacterial agents: a critical review, Curr. Top. Med. Chem. 3 (2003) 1021-1042.
-
[5]
[5] M.B. Gravestock, Recent developments in the discovery of novel oxazolidinone antibacterials, Curr. Opin. Drug Discov. Devel. 8 (2005) 469-477.
-
[6]
[6] T.S. Lundstrom, J.D. Sobel, Antibiotics for gram-positive bacterial infections: vancomycin, quinupristin-dalfopristin, linezolid, and daptomycin, Infect. Dis. Clin. North Am. 18 (2004) 651-668.
-
[7]
[7] W.A. Gregory, D.R. Brittelli, C.L.J. Wang, et al., Antibacterials. Synthesis and structure-activity studies of 3-aryl-2-oxooxazolidines. 1. The B group, J. Med. Chem. 32 (1989) 1673-1681.
-
[8]
[8] S.J. Brickner, D.K. Hutchinson, M.R. Barbachyn, et al., Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections, J. Med. Chem. 39 (1996) 673-679.
-
[9]
[9] D. Yu, G. Huiyuan, A high yielding one-pot, novel synthesis of carbamate esters from alcohols using Mitsunobu's reagent, Bioorg. Med. Chem. Lett. 12 (2002) 857-859.
-
[10]
[10] D.M. Rao, P.K. Reddy, Process for the preparation of linezolid and related compounds, WO 2005099353 A3 (2005).
-
[11]
[11] G. Madhusudhan, G.O. Reddy, J. Ramanatham, et al., A facile synthesis of 2-((5R)-2-oxo-5-oxazolidinyl)methyl-1H-isoindole-1,3(2H)-dione, Indian J. Chem. 45B (2006) 1264-1268.
-
[12]
[12] O.A. Phillips, E.E. Udo, M.E. Abdel-Hamid, et al., Synthesis and antibacterial activity of novel 5-(4-methyl-1H-1,2,3-triazole) methyl oxazolidinones, Eur. J. Med. Chem. 44 (2009) 3217-3227.
-
[13]
[13] R.J. Sciotti, M. Pliushchev, P.E. Wiedeman, et al., The synthesis and biological evaluation of a novel series of antimicrobials of the oxazolidinone class, Bioorg. Med. Chem. Lett. 12 (2002) 2121-2123.
-
[14]
[14] B. Mallesham, B.M. Rajesh, P.R. Reddy, et al., Highly efficient CuI-catalyzed coupling of aryl bromides with oxazolidinones using Buchwald's protocol: a short route to linezolid and toloxatone, Org. Lett. 5 (2003) 963-965.
-
[15]
[15] J.F. Hartwig, Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism, Angew. Chem. Int. Ed. 37 (1998) 2046-2067.
-
[16]
[16] J.P. Wolfe, S. Wagaw, J.F. Marcoux, et al., Rational development of practical catalysts for aromatic carbon-nitrogen bond formation, Acc. Chem. Res. 31 (1998) 805-818.
-
[17]
[17] A. Klapars, J.C. Antilla, X. Huang, S.L. Buchwald, A general and efficient copper catalyst for the amidation of aryl halides and the N-arylation of nitrogen heterocycles, J. Am. Chem. Soc. 123 (2001) 7727-7729.
-
[18]
[18] A. Klapars, X. Huang, S.L. Buchwald, A general and efficient copper catalyst for the amidation of aryl halides, J. Am. Chem. Soc. 124 (2002) 7421-7428.
-
[19]
[19] S.K. Kang, D.H. Kim, J.N. Park, Copper-catalyzed N-arylation of aryl iodides with benzamides or nitrogen heterocycles in the presence of ethylenediamine, Synlett (2002) 427-430.
-
[20]
[20] B. Mallesham, B.M. Rajesh, P. Rajamolhan Reddy, et al., Highly efficient CuIcatalyzed coupling of aryl bromides with oxazolidinones using Buchwald's protocol: a short route to linezolid and toloxatone, Org. Lett. 5 (2003) 963-965.
-
[21]
[21] Y. Hayashi, T. Kayatani, H. Sugimoto, et al., Synthesis, characterization, and reversible oxygenation of alkoxo diiron(Ⅱ) complexes with the dinucleating ligand N,N,N0,N0-tetrakis{(6-methyl-2-pyridyl)methyl}-1,3-diamino-propan-2-olate, J. Am. Chem. Soc. 117 (1995) 11220-11229.
-
[1]
-
-
[1]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[2]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[3]
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
-
[4]
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
-
[5]
Bowen Wang , Longwu Sun , Qianqian Cao , Xinzhi Li , Jianai Chen , Shizhao Wang , Miaolin Ke , Fener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617
-
[6]
Yuexiang Liu , Xiangqiao Yang , Tong Lin , Guantian Yang , Xiaoyong Xu , Bubing Zeng , Zhong Li , Weiping Zhu , Xuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747
-
[7]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[8]
Rong-Nan Yi , Wei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115
-
[9]
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
-
[10]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[11]
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
-
[12]
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
-
[13]
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
-
[14]
Hui Jin , Qin Cai , Peiwen Liu , Yan Chen , Derong Wang , Weiping Zhu , Yufang Xu , Xuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721
-
[15]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[16]
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
-
[17]
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
-
[18]
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
-
[19]
Tengfei Xuan , Xinyu Zhang , Wei Han , Yidong Huang , Weiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816
-
[20]
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(688)
- HTML views(15)