Citation: Jia-Hua Cui, Dagula Hu, Xu Zhang, Zheng Jing, Jing Ding, Ru-Bing Wang, Shao-Shun Li. Design and synthesis of new 7, 8-dimethoxy-α-naphthoflavones as CYP1A1 inhibitors[J]. Chinese Chemical Letters, ;2013, 24(3): 215-218. shu

Design and synthesis of new 7, 8-dimethoxy-α-naphthoflavones as CYP1A1 inhibitors

  • Corresponding author: Shao-Shun Li, 
  • Received Date: 19 November 2012
    Available Online: 27 December 2012

  • The flavonoids as inhibitors of CYP1A1 exhibit chemopreventive effects against certain procarcinogens and have been considered as the promising cancer preventive agents. A series of novel 7,8-dimethoxy-α-naphthoflavones as the substrate analogs were designed and prepared. The enzyme assay suggested that all of these new flavones were stronger inhibitors of CYP1A1 than the lead compound a-naphthoflavone. Among the tested ones, 3h showed the most potent inhibitory effects.
  • 加载中
    1. [1]

      [1] J.B. Harborne, C.A. Williams, Advances in flavonoid research since 1992, Phytochemistry 55 (2000) 481-504.

    2. [2]

      [2] B.H. Havsteen, The biochemistry and medical significance of the flavonoids, Pharmacol. Ther. 96 (2002) 67-202.

    3. [3]

      [3] A.A. Franke, R.V. Cooney, L.J. Custer, et al., Inhibition of neoplastic transformation and bioavailability of dietary flavonoid agents, Adv. Exp. Med. Biol. 439 (1998) 237-248.

    4. [4]

      [4] F.V. So, N. Guthrie, A.F. Chambers, et al., Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices, Nutr. Cancer 26 (1996) 167-181.

    5. [5]

      [5] T. Tanaka, K. Kawabata, M. Kakumoto, et al., Chemoprevention of 4-nitroquinoline-1-oxide-induced oral carcinogenesis by citrus auraptene in rats, Carcinogenesis 19 (1998) 425-431.

    6. [6]

      [6] H.J. Kim, B.L. Sang, S.K. Park, et al., Effects of hydroxyl group numbers on the B-ring of 5, 7-dihydroxyflavones on the differential inhibition of human CYP 1A and CYP1B1 enzymes, Arch. Pharm. Res. 28 (2005) 1114-1121.

    7. [7]

      [7] V.P. Androutsopoulos, A. Papakyriakou, D. Vourloumis, et al., Dietary flavonoids in cancer therapy and prevention: substrates and inhibitors of cytochrome P450 CYP1 enzymes, Pharmacol. Ther. 126 (2010) 9-20.

    8. [8]

      [8] T. Shimada, Y. Fujii-Kuriyama, Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1, Cancer Sci. 95 (2004) 1-6.

    9. [9]

      [9] V.P. Androutsopoulos, A.M. Tsatsakis, D.A. Spandidos, Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention, BMC Cancer 9 (2009) 187-204.

    10. [10]

      [10] A. Pastrakuljic, B.K. Tang, E.A. Roberts, et al., Distinction of CYP1A1 and CYP1A2 activity by selective inhibition using fluvoxamine and isosafrole, Biochem. Pharmacol. 53 (1997) 531-538.

    11. [11]

      [11] A.P. Koley, J.T.M. Buters, R.C. Robinson, et al., Differential mechanisms of cytochrome P450 inhibition and activation by a-naphthoflavone, J. Biol. Chem. 272 (1997) 3149-3152.

    12. [12]

      [12] S.S. Li, Medicinal Chemistry, 1st ed., Science Publication, Beijing, 2009.

    13. [13]

      [13] R. Livingstone, Rodd's Chemistry of Carbon Compounds, vol. IV, Elsevier Publishing Co., Amsterdam, 1977.

    14. [14]

      [14] W. Baker, Molecular rearrangement of some o-acyloxyaceto phenones and the mechanism of the production of 3-acylchromones, J. Chem. Soc. (1933) 1381-1389.

    15. [15]

      [15] H.S. Mahal, K. Venkataraman, Synthetical experiments in the chromone group. Part XIV. The action of sodamide on 1-acyloxy-2-acetonaphthones, J. Chem. Soc. (1934) 1767-1769.

    16. [16]

      [16] D.C. Bhalla, H.S. Mahal, K. Venkataraman, Synthetical experiments in the chromone group. Part XVⅡ. Further observations on the action of sodamide on oacyloxyacetophenous, J. Chem. Soc. (1935) 868-870.

    17. [17]

      [17] F.A. Carey, Organic Chemistry, 7th ed., McGraw-Hill Inc., New York, 2008.

    18. [18]

      [18] R.G.F. Giles, A.B. Hughes, M.V. Sargent, Regioselectivity in the reactions of methoxydehydrobenzenes with furans. Part 2. 2-methoxyfuran and methoxydehydrobenzenes, J. Chem. Soc. Perkin Trans. I (1991) 1581-1587.

    19. [19]

      [19] K.S. Huang, E.C. Wang, H.M. Chen, Syntheses of substituted naphthalenes and naphthols, J. Chin. Chem. Soc. 51 (2004) 585-605.

    20. [20]

      [20] The spectroscopic data of compound 9 and 10. 9: White crystals; mp 89-91℃; IR (KBr, cm-1): v 2965, 2933, 1761vs (C=O), 1369, 1274, 1212, 1079, 1007; 1H NMR (300 MHz, CDCl3): δ 8.02 (d, 1H, J = 9.0 Hz, H-C(4)), 7.61 (d, 1H, J = 9.0 Hz, H-C(8)), 7.45 (dd, 1H, J = 7.2, 9.0 Hz, H-C(3)), 7.31 (d, 1H, J = 9.0 Hz, H-C(7)), 7.11 (d, 1H, J = 7.2 Hz, H-C(2)), 3.99 (s, 6H, CH3O), 2.45 (s, 3H, CH3CO); 13C NMR (100 MHz, CDCl3): δ 169.4 (quat., C=O), 148.8, 146.7, 143.1, 130.6, 122.9 (quat., 5 CAr,), 125.7, 119.5, 117.5, 116.2, 115.6 (5 CArH), 61.1 (OCH3), 56.8 (OCH3), 20.9 (CH3); ESIHRMS: Calcd. for C14H15O4 247.0970; found 247.0958 [M+H]+. 10: Light yellow plates; mp 136-138℃; IR (KBr, cm-1): v 2980, 2950, 1622vs (C=O), 1497, 1488, 1394, 1281, 1085; 1H NMR (CDCl3, 300 MHz): δ 14.15 (s, 1H, OH), 8.23 (d, 1H, J = 9.3 Hz, H-C(4)), 7.61 (d, 1H, J = 9.0 Hz, H-C(8)), 7.51 (d, 1H, J = 9.0 Hz, H-C(7)), 7.28 (d, 1H, J = 9.3 Hz, H-C(3)), 4.02 (s, 3H, CH3O), 3.96 (s, 3H, CH3O), 2.67 (s, 3H, CH3CO). 13C NMR (100 MHz, CDCl3): δ 203.8 (quat., C=O), 162.9, 152.3, 142.4,133.0, 120.4, 111.8 (quat., 6 CAr), 125.2, 121.4, 113.4, 111.6 (4 CArH), 61.1 (OCH3), 56.3 (OCH3), 26.6 (CH3); ESI-HRMS: Calcd. for C14H15O4 247.0970; found 247.0964 [M+H]+.

    21. [21]

      [21] S. Yamaori, M. Kushihara, I. Yamamoto, et al., Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes, Biochem. Pharmacol. 79 (2010) 1691-1698.

    22. [22]

      [22] The spectroscopic data of compounds 3a-3j. 3a: Pale yellow crystals; mp 175-176℃; 1H NMR (300 MHz, CDCl3): δ 8.38 (d, 1H, J = 9.0 Hz), 8.15 (d, 1H, J = 9.0 Hz), 8.07 (d, 1H, J = 9.0 Hz), 8.02 (m, 2H, H-C(2'), H-C(6')), 7.58 (m, 3H, H-C(3'), H-C(4'), H-C(5')), 7.46 (d, 1H, J = 9.0 Hz), 6.96 (s, 1H, H-C(3)), 4.07 (s, 3H, CH3O), 4.03 (s, 3H, CH3O); ESI-HRMS: Calcd. for C21H17O4 333.1127; found 333.1119 [M+H]+. 3b: Pale-yellow needles; mp 207-209℃; 1H NMR (300 MHz, CDCl3): δ 8.33 (d, 1H, J = 9.0 Hz), 8.13 (d, 1H, J = 9.0 Hz), 8.04 (d, 1H, J = 9.0 Hz), 7.95 (d, 2H, J = 9.0 Hz, H-C(2'), H-C(6')), 7.44 (d, 1H, J = 9.0 Hz), 7.07 (d, 2H, J = 9.0 Hz, H-C(30), H-C(50)), 6.85 (s, 1H, H-C(3)), 4.06 (s, 3H, CH3O), 4.03 (s, 3H, CH3O), 3.91 (s, 3H, CH3O); ESI-HRMS: Calcd. for C22H19O5 363.1233; found 363.1217 [M+H]+. 3c: While needles; mp 190-191℃; 1H NMR (300 MHz, CDCl3): δ 8.31 (d, 1H, J = 9.0 Hz), 8.14 (d, 1H, J = 9.0 Hz), 8.02 (m, 2H), 7.51 (m, 1H), 7.42 (d, 1H, J = 9.0 Hz), 7.25 (s, 1H), 7.17 (m, 1H), 7.08 (d, 1H, J = 8.4 Hz, H-C(3')), 4.05 (s, 3H, CH3O), 4.02 (s, 3H, CH3O), 3.96 (s, 3H, CH3O); ESI-HRMS: Calcd. for C22H19O5 363.1233; found 363.1221 [M+H]+. 3d: Pale yellow crystals; mp 220-222℃; 1H NMR (300 MHz, CDCl3): δ 8.31 (d, 1H, J = 9.0 Hz), 8.13 (d, 1H, J = 9.0 Hz), 8.05 (d, 1H, J = 9.0 Hz), 7.65 (d, 1H, J = 8.4 Hz, H-C(6')), 7.45 (m, 2H, H-C(2'), H-C(5')), 7.04 (d, 1H, J = 9.0 Hz), 6.86 (s, 1H, H-C(3)), 4.07 (s, 3H, CH3O), 4.03 (s, 3H, CH3O), 4.02 (s, 3H, CH3O), 3.99 (s, 3H, CH3O); ESI-HRMS: Calcd. for C23H21O6 393.1338; found 393.1345 [M+H]+. 3e: Pale yellow needles; mp 204-206℃; 1H NMR (300 MHz, CDCl3): δ 8.32 (d, 1H, J = 9.3 Hz), 8.13 (d, 1H, J = 9.0 Hz), 8.07 (d, 1H, J = 9.0 Hz), 7.94 (d, 2H, J = 8.4 Hz), 7.55 (d, 2H, J = 8.4 Hz), 7.46 (d, 1H, J = 9.3 Hz), 6.91 (s, 1H, H-C(3)), 4.07 (s, 3H, CH3O), 4.03 (s, 3H, CH3O); ESI-HRMS: Calcd. for C21H16O4 367.0737; found 367.0728 [M+H]+. 3f: Light yellow needles; mp 193-195℃; 1H NMR (300 MHz, CDCl3): δ 8.31 (d, 1H, J = 9.0 Hz), 8.16 (d, 1H, J = 9.0 Hz), 8.08 (d, 1H, J = 9.0 Hz), 7.70 (m, 1H, H-C(6')), 7.59 (d, 1H, J = 7.2 Hz, H-C(3')), 7.48 (m, 2H, H-C(40), H-C(5')), 7.41 (d, 1H, J = 9.0 Hz), 6.79 (s, 1H, H-C(3)), 4.05 (s, 3H, CH3O), 4.03 (s, 3H, CH3O); ESI-HRMS: Calcd. for C21H16O4 367.0737; found 367.0733 [M+H]+. 3g: Light yellow needles; mp 194-195℃; 1H NMR (300 MHz, CDCl3): δ 8.32 (d, 1H, J = 9.0 Hz), 8.12 (d, 1H, J = 9.0 Hz), 8.06 (d, 1H, J = 9.0 Hz), 7.98 (s, 1H, H-C(2')), 7.85 (d, 1H, J = 6.6 Hz), 7.53 (m, 2H), 7.47 (d, 1H, J = 9.0 Hz), 6.91 (s, 1H, H-C(3)), 4.07 (s, 3H, CH3O), 4.03 (s, 3H, CH3O); ESI-HRMS: Calcd. for C21H16O4 367.0737; found 367.0726 [M+H]+. 3 h: Pale yellow needles; mp 206-208℃; 1H NMR (300 MHz, CDCl3): δ 8.33 (d, 1H, J = 9.0 Hz), 8.13 (d, 1H, J = 9.0 Hz), 8.07 (d, 1H, J = 9.0 Hz), 8.01 (m, 2H), 7.46 (d, 1H, J = 9.0 Hz), 7.27 (m, 2H), 6.88 (s, 1H, HC(3)), 4.07 (s, 3H, CH3O), 4.03 (s, 3H, CH3O); ESI-HRMS: Calcd. for C21H16FO4 351.1033; found 351.1024 [M+H]+. 3i: Pale yellow crystals; mp 192-193℃; 1H NMR (300 MHz, CDCl3): δ 8.33 (d, 1H, J = 9.0 Hz), 8.14 (d, 1H, J = 9.0 Hz), 8.07 (d, 1H, J = 9.0 Hz), 8.00 (m, 1H, H-C(6')), 7.55 (m, 1H), 7.45 (d, 1H, J = 9.0 Hz), 7.38 (m, 1H), 7.28 (m, 1H), 7.04 (s, 1H, H-C(3)), 4.07 (s, 3H, CH3O), 4.03 (s, 3H, CH3O); ESIHRMS: Calcd. for C21H16FO4 351.1033; found 351.1045 [M+H]+. 3j: Light yellow crystals; mp 192-194℃; 1H NMR (300 MHz, CDCl3): δ 8.33 (d, 1H, J = 9.0 Hz), 8.12 (d, 1H, J = 9.0 Hz), 8.06 (d, 1H, J = 9.0 Hz), 7.76 (d, 1H, J = 7.5 Hz, H-C(60)), 7.73 (m, 1H), 7.55 (m, 1H), 7.47 (d, 1H, J = 9.0 Hz), 7.27 (m, 1H), 6.93 (s, 1H, H-C(3)), 4.07 (s, 3H, CH3O), 4.03 (s, 3H, CH3O); ESI-HRMS: Calcd. for C21H16FO4 351.1033; found 351.1020 [M+H]+.

  • 加载中
    1. [1]

      Xu ZhangJiang LiKai-Zhou LuYa-Nan YangJian-Shuang JiangXiang YuanZi-Ming FengFei YePei-Cheng Zhang . Neosophoflavonoids A–C, A class of highly oxidized hybrid flavonoids from Sophora flavescens with antidiabetic effects. Chinese Chemical Letters, 2024, 35(10): 109456-. doi: 10.1016/j.cclet.2023.109456

    2. [2]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    3. [3]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    4. [4]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    5. [5]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    6. [6]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    7. [7]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    8. [8]

      . 第41卷第1期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(1): -.

    9. [9]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    10. [10]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    11. [11]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    12. [12]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    13. [13]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    14. [14]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    15. [15]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    16. [16]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    17. [17]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    18. [18]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    19. [19]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    20. [20]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

Metrics
  • PDF Downloads(0)
  • Abstract views(1199)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return