Citation: Jalal Albadi, Azam Mansournezhad, Mohammad Darvishi-Paduk. Poly(4-vinylpyridine):As a green, efficient and commercial available basic catalyst for the synthesis of chromene derivatives[J]. Chinese Chemical Letters, ;2013, 24(3): 208-210.
-
Poly(4-vinylpyridine) is reported as a green, commercial available and efficient basic recyclable catalyst for the synthesis of chromene derivatives. This catalyst can be easily recovered by simple filtration and recycled up to 5 consecutive runs without any loss of its efficiency.
-
Keywords:
- Poly(4-vinylpyridine),
- Chromene,
- Basic catalyst,
- β-Naphthol,
- Malononitrile
-
-
[1]
[1] J. Weitkamp, M. Hunger, U. Rymsa, Basis catalysis on microporous and mesoporous materials: recent progress and perspectives, Micropor. Mesopor. Mater. 48 (2001) 255-270.
-
[2]
[2] A. Corma, V. Fornes, R.M. Martín-Aranda, H. Garcia, J. Primo, Zeolites as base catalysts: condensation of aldehydes with derivatives of malonic esters, Appl. Catal. 59 (1990) 237-248.
-
[3]
[3] P. Laszlo, Catalysis of organic reactions by inorganic solids, Acc. Chem. Res. 19 (1986) 121-127.
-
[4]
[4] A. Corma, S. Iborra, J. Primo, F. Rey, One-step synthesis of citronitril on hydrotalcite derived base catalysts, Appl. Catal. A: Gen. 114 (1994) 215-225.
-
[5]
[5] A. Corma, R.M. Martin-Aranda, Alkaline-substituted sepiolites as a new type of strong base catalyst, J. Catal. 130 (1991) 130-137.
-
[6]
[6] S. Ernst, M. Hartman, S. Sauerbeck, T. Bongers, A novel family of solid basic catalysts obtained by nitridation of crystalline microporous aluminosilicates and aluminophosphates, Appl. Catal. A: Gen. 200 (2000) 117-123.
-
[7]
[7] A. Shaabani, A.H. Rezayan, A. Sarvary, A. Rahmati, H.R. Khavasi, Pyridine catalyzed reaction of tetracyanoethylene and activated 1,3-dicarbonyl CH-acid compounds: A rapid and efficient synthesis of pyran annulated heterocyclic systems, Catal. Commun. 9 (2008) 1082-1086.
-
[8]
[8] B. Tamami, K. Parvanak-Borujeni, M. Iran, Polymer, synthesis and applications of cross-linked poly(N-bromomaleimide) in oxidation of various organic compounds, Iran, Polymer. J. 18 (2009) 191-206.
-
[9]
[9] M. Kidwai, S. Saxena, M.K.R. Khan, S.S. Thukral, Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents, Bioorg. Med. Chem. Lett. 15 (2005) 4295-4298.
-
[10]
[10] M.A. Sofan, F.M. El-Taweel, A.G.A. Elagamey, M.H. Elnagdi, Studies on cinnamonitriles: the reaction of cinnamonitriles with cyclopentanone, Liebigs Ann. Chem. (1989) 935-936.
-
[11]
[11] X.Y. Meng, H.J. Wang, C.P. Wang, Z.H. Zhang, Disodium hydrogen phosphate as an efficient and cheap catalyst, Synth. Commun. 41 (2011) 3477-3484.
-
[12]
[12] A.Q. Zhang, M. Zhang, H.H. Chen, J. Chen, H.Y. Chen, Convenient method for synthesis of substituted 2-amino-2-chromenes, Synth. Commun. 37 (2007) 231-235.
-
[13]
[13] H. Mehrabi, M. Kazemi-Mireki, CuO nanoparticles: an efficient and recyclable nanocatalyst for the rapid and green synthesis of 3,4-dihydropyrano[c]chromenes, Chin. Chem. Lett. 22 (2011) 1419-1422.
-
[14]
[14] M.R. Naimi-Jamal, S. Mashkouri, A. Sharifi, An efficient, multicomponent approach for solvent-free synthesis of 2-amino-4H-chromene scaffold, Mol. Divers. 14 (2010) 437-477.
-
[15]
[15] H. Eshghi, G.H. Zohouri, S. Damavandi, M. Vakili, Efficient one-pot synthesis of 1,3-diaryl-3H-benzo[f]chromenes using ferric hydrogensulfate, Chin. Chem. Lett. 21 (2010) 1423-1426.
-
[16]
[16] K. Gong, H.L. Wang, D. Fang, Z.L. Liu, Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media, Catal. Commun. 9 (2008) 650-653.
-
[17]
[17] Y.M. Ren, C. Cai, Convenient and efficient method for synthesis of substituted 2-amino-2-chromenes using catalytic amount of iodine and K2CO3 in aqueous medium, Catal. Commun. 9 (2008) 1017-1020.
-
[18]
[18] L. Chen, X.J. Huang, Y.Q. Li, M.Y. Zho, W.J. Zheng, A one-pot multicomponent reaction for the synthesis of 2-amino-2-chromenes promoted by N,N-dimethylamino-functionalized basic ionic liquid catalysis under solvent-free condition, Monatsh. Chem. 140 (2009) 45-47.
-
[19]
[19] R.A. Mekheirmer, K.U. Sadek, Microwave-assisted reactions: three-component process for the synthesis of 2-amino-2-chromenes under microwave heating, Chin. Chem. Lett. 20 (2009) 271-274.
-
[20]
[20] J.M. Khurana, B. Nand, P. Saluja, DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4Hbenzo[h]chromenes and 2-amino-4H benzo[g]-chromenes in aqueous medium, Tetrahedron. 66 (2010) 5637-5641.
-
[21]
[21] S. Samantaray, D.K. Pradhan, G. Hota, B.G. Mishra, Catalytic application of CeO2-CaO nanocomposite oxide synthesized using amorphous citrate process toward the aqueous phase one pot synthesis of 2-amino-2-chromenes, Chem. Eng. J. 19 (2012) 1-9.
-
[22]
[22] Z.Q. Ya, S.D. Qing, T.S. Jing, W.X. Shan, One-pot synthesis of 2-amino-3-cyano-4-aryl-4H-benzo[h]chromenes, Chin. J. Appl. Chem. 19 (2002) 1018-1020.
-
[23]
[23] L.Y. Zeng, M.F. Lv, C. Cai, Iodine catalyzed synthesis of the chromene derivatives in one-pot, Chin. Chem. Lett. 32 (2012) 1347-1351.
-
[24]
[24] J. Banothu, R. Bavanthula, Brønsted acidic ionic liquid catalyzed highly efficient synthesis of chromeno pyrimidinone derivatives and their antimicrobial activity, Chin. Chem. Lett. 23 (2012) 1015-1018.
-
[25]
[25] I. Mohammadzadeh, H. Sheibani, A convenient one-pot synthesis of new chromeno[3,4-c]chromene and chromeno[3,4-c]pyridine derivatives in the presence of high surface area of magnesium oxide, Chin. Chem. Lett. 23 (2012) 1327-1330.
-
[1]
-
-
[1]
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
-
[2]
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
-
[3]
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
-
[4]
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
-
[5]
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
-
[6]
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
-
[7]
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
-
[8]
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2024.100191
-
[9]
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
-
[10]
Shuang Li , Jiayu Sun , Guocheng Liu , Shuo Zhang , Zhong Zhang , Xiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148
-
[11]
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
-
[12]
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
-
[13]
Yanling Yang , Zhenfa Ding , Huimin Wang , Jianhui Li , Yanping Zheng , Hongquan Guo , Li Zhang , Bing Yang , Qingqing Gu , Haifeng Xiong , Yifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585
-
[14]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[15]
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
-
[16]
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
-
[17]
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
-
[18]
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
-
[19]
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
-
[20]
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(689)
- HTML views(28)