Citation: Geng Xu, Ju Guo, Zheng Yan, Nan Wang, Zhan-Zhu Liu. Synthesis and cytotoxicity of dinuclear platinum(Ⅱ) complexes of (1S, 3S)-1, 2, 3, 4-tetrahydroisoquinolines[J]. Chinese Chemical Letters, ;2013, 24(3): 186-188. shu

Synthesis and cytotoxicity of dinuclear platinum(Ⅱ) complexes of (1S, 3S)-1, 2, 3, 4-tetrahydroisoquinolines

  • Corresponding author: Zhan-Zhu Liu, 
  • Received Date: 21 December 2012
    Available Online: 4 February 2013

  • A series of novel dinuclear platinum(Ⅱ) complexes with (1S, 3S)-1,2,3,4-tetrahydroisoquinolines as the ligands were synthesized as potential anticancer agents in several steps starting from commercially available L-DOPA. The cytotoxicities of the series of dinuclear platinum(Ⅱ) complexes of tetrahydroisoquinoline were tested against HCT-8, BEL-7402, A2780, MCF-7, Hela, A549 and BGC-823 cell lines by the MTT test. These complexes showed selective inhibition activity against cisplatin-insensitive cell line Skov3.
  • 加载中
    1. [1]

      [1] (a) D. Wang, S. Lippard, Cellular processing of platinum anticancer drugs, Nat. Rev. Drug Discov. 4 (2005) 307-320;

    2. [2]

      (b) E. Wong, C.M. Giandomenico, Current status of platinum-based antitumor drugs, Chem. Rev. 99 (1999) 2451-2466.

    3. [3]

      [2] E.R. Jamieson, S.J. Lippard, Structure, recognition, and processing of cisplatin-DNA adducts, Chem. Rev. 99 (1999) 2467-2498.

    4. [4]

      [3] (a) Y.P. Ho, S.C.F. Au-Yeung, K.K.W. To, Structure, recognition, and processing of cisplatin-DNA adducts, Med. Res. Rev. 23 (2003) 633-655;

    5. [5]

      (b) L.M. Pasetto, M.R. D'Andrea, A.A. Brandes, E. Rossi, S. Monfardini, The development of platinum compounds and their possible combination, Crit. Rev. Oncol./Hematol. 60 (2006) 59-75.

    6. [6]

      [4] (a) M.D. Hall, H.R. Mellor, R. Callaghan, T.W. Hambley, Cisplatinum and transplatinum complexes with benzyliminoether ligands; synthesis, characterization, structure-activity relationships, and in vitro and in vivo antitumor efficacy, J. Med. Chem. 50 (2007) 3403-3411;

    7. [7]

      (b) A.K. Mishra, N.K. Kaushik, Synthesis, characterization, cytotoxicity, antibacterial and antifungal evaluation of some new platinum(Ⅳ) and palladium(Ⅱ) complexes of thiodiamines, Eur. J. Med. Chem. 42 (2007) 1239-1246.

    8. [8]

      [5] Y. Chen, Z. Guo, J.A. Parkinson, P.J. Sadler, Kinetic control of reactions of a sterically hindered platinum picoline anticancer complex with guanosine 50-monophosphate and glutathione, J. Chem. Soc. Dalton Trans. 21 (1998) 3577-3586.

    9. [9]

      [6] A. Martinez, J. Lorenzo, M.J. Prieto, et al., Influence of the position of substituents in the cytotoxic activity of trans platinum complexes with hydroxymethyl pyridines, Bioorg. Med. Chem. 15 (2007) 969-979.

    10. [10]

      [7] (a) V. Brabec, P. Christofis, M. Slamova, et al., DNA interactions of new cytotoxic tetrafunctional dinuclear platinum complex trans, trans-[{PtCl2(NH3)}2(piperazine)], Biochem. Pharmacol. 73 (2007) 1887-1900;

    11. [11]

      (b) P. De Hoog, C. Boldron, P. Gamez, et al., New approach for the preparation of efficient DNA cleaving agents: ditopic copper-platinum complexes based on 3-Clip-Phen and cisplatin, J. Med. Chem. 50 (2007) 3148-3152.

    12. [12]

      [8] (a) A. Bakalova, H. Varbanov, R. Buyukliev, et al., Synthesis, characterization and biological activity of Pt(Ⅱ) and Pt(Ⅳ) complexes with 5-methyl-5(4-pyridyl)-2,4-imidazolidenedione, Eur. J. Med. Chem. 43 (2008) 958-965;

    13. [13]

      (b) C.Y. Kuo, M.J. Wu, Y.H. Kuo, Synthesis and antitumor activity of cis-dichloroplatinum(Ⅱ) complexes of 1-(2-aminophenyl)-1,2,3,4-tetrahydro-isoquinolines, Eur. J. Med. Chem. 41 (2006) 940-949.

    14. [14]

      [9] K. Tomioka, Y. Kubota, K. Koga, Design, synthesis and antitumor activity-absolute configuration relationships of podophyllotoxin aza-analogues, Tetrahedron 49 (1993) 1891-1900.

    15. [15]

      [10] F.V. Nussbaum, B. Miller, S. Wild, et al., Synthesis of 1-(2-aminophenyl)isoquinolines and the biological activity of their cis-dichloro Platinum(Ⅱ) complexes, J. Med. Chem. 42 (1999) 3478-3485.

    16. [16]

      [11] G. Xu, Z. Yan, N. Wang, Z.Z. Liu, Synthesis and cytotoxicity of cis-dichloroplatinum(Ⅱ) complexes of (1S, 3S) -1,2,3,4-tetrahydroisoquinolines, Eur. J. Med. Chem. 46 (2011) 356-363.

    17. [17]

      [12] Y. Wang, Z.Z. Liu, S.Z. Chen, X.T. Liang, Asymmetric Pictet-Spengler reactions: synthesis of tetrahydroisoquinoline derivatives from L-DOPA, Chin. Chem. Lett. 14 (2004) 505-507.

    18. [18]

      [13] G. Xu, Z.Z. Liu, Synthesis of new chiral 1,2,3,4-tetrahydroisoquinoline b-amino alcohols from L-DOPA, Chin. Chem. Lett. 19 (2008) 1271-1273.

    19. [19]

      [14] Data of ligands 7a-e. 7a: White solid, mp > 250℃, [α]D24-33.3 (c 0.81 CH3OH) 1H NMR (300 MHz, DMSO-d6): δ 1.38 (s, 4H, C-C2H4-C), 1.71 (s, 4H, C-CH2-C×2), 2.90-3.10 (m, 6H, CH2-Ar×2), 3.20-3.30 (m, 2H, CH2-N×2), 3.44 (s, 6H, -OCH3×2), 3.78 (s, 6H, -OCH3×2), 4.10 (m, 2H, CH-Ar×2), 5.74 (d, 2H, J = 6.6, Ar-CH-Ar×2), 6.07 (s, 2H, Ar-H×2), 6.85 (s, 2H, Ar-H×2), 7.50 (s, 10H, Ar-H×2), 9.58 (br, 4H, -NH×2), 10.07 (br, 2H, -NH×2), 10.27 (br, 2H, -NH×2). ESI-MS: 679 (m/z + 1); HRMS (ESI) Calcd. for C42H55N4O4: 679.4217, found: 679.4224. 7b: White solid, mp 190-192℃, [α]D24- -35.2 (c 0.31 CH3OH) 1H NMR (300 M Hz, DMSO-d6): δ 1.35 (s, 6H, C-C3H6-C), 1.70 (s, 4H, C-CH2-C×2), 2.90-3.10 (m, 6H, CH2-Ar×2), 3.20-3.30 (m, 2H, CH2-N×2), 3.44 (s, 6H, -OCH3×2), 3.78 (s, 6H, -OCH3×2), 4.10 (m, 2H, CH-Ar×2), 5.72 (m, 2H, Ar-CH-Ar×2), 6.07 (s, 2H, Ar-H×2), 6.85 (s, 2H, Ar-H×2), 7.49 (m, 10H, Ar-H×2), 9.65 (br, 4H, -NH×2), 10.17 (br, 2H, -NH×2), 10.33 (br, 2H, -NH×2). ESI-MS: 693 (m/z + 1); HRMS (ESI) Calcd. for C43H57N4O4: 693.4374, found: 693.4365. 7c: White solid, mp 237-239℃, [α]D24-34.7 (c 0.39 CH3OH) 1H NMR (300 MHz, DMSO-d6): δ 1.32 (s, 8H, C-C4H8-C), 1.68 (m, 4H, C-CH2-C×2), 2.90-3.10 (m, 4H, CH2-Ar×2), 3.20-3.30 (m, 8H, CH2-N-CH2×2), 3.44 (s, 6H, -OCH3×2), 3.78 (s, 6H, -OCH3×2), 4.09 (m, 2H, N-CH-C×2), 5.72 (m, 2H, Ar-CH-Ar×2), 6.07 (s, 2H, Ar-H×2), 6.85 (s, 2H, Ar-H×2), 7.49 (m, 10H, Ar-H×2), 9.62 (br, 4H, -NH×2), 10.10 (br, 2H, -NH×2), 10.33 (br, 2H, -NH×2). 13C NMR (75 MHz, DMSO-d6): δ 148.64, 147.52, 136.17, 130.19, 129.47, 128.65, 124.13, 123.51, 111.41, 110.54, 60.63, 55.57, 55.46, 51.54, 48.09, 47.16, 29.19, 28.04, 25.66, 25.26. ESI-MS: 707 (m/z + 1); HRMS (ESI) Calcd. for C44H59N4O4: 707.4536, found: 707.4553. 7d: Yellowish solid, mp 185-187℃, [α]D24-27.9 (c 0.57 CH3OH) 1H NMR (300 MHz, DMSO-d6): δ 1.28 (s, 10H, C-C5H10-C), 1.65 (m, 4H, C-CH2-C×2), 2.90-3.10 (m, 6H, CH2-Ar×2), 3.20-3.30 (m, 2H, CH2-N×2), 3.35 (s, 6H, -OCH3×2), 3.77 (s, 6H, -OCH3×2), 4.09 (m, 2H, CH-Ar×2), 5.71 (m, 2H, Ar-CH-Ar×2), 6.06 (s, 2H, Ar-H×2), 6.83 (s, 2H, Ar-H×2), 7.48 (m, 10H, Ar-H×2), 9.63 (br, 4H, -NH×2), 10.15 (br, 2H, -NH×2), 10.32 (br, 2H, -NH×2). ESI-MS: 721 (m/z + 1); HRMS (ESI) Calcd. for C45H61N4O4: 721.4687, found: 721.4692. 7e: Yellowish solid, mp 209-211℃, [α]D24-30.9 (c 0.58 CH3OH) 1H NMR (300 MHz, DMSO-d6): δ 1.27 (s, 16H, C-C8H16-C), 1.66 (m, 4H, C-CH2-C×2), 2.90-3.10 (m, 6H, CH2-Ar×2), 3.20-3.30 (m, 2H, CH2-N×2), 3.44 (s, 6H, -OCH3×2), 3.78 (s, 6H, -OCH3×2), 4.09 (m, 2H, CH-Ar×2), 5.73 (m, 2H, Ar-CH-Ar×2), 6.07 (s, 2H, Ar-H×2), 6.85 (s, 2H, Ar-H×2), 7.49 (m, 10H, Ar-H×2), 9.61 (br, 4H, -NH×2), 10.14 (br, 2H, -NH×2), 10.32 (br, 2H, -NH×2). ESI-MS: 764 (m/z + 1); HRMS (ESI) Calcd. for C48H67N4O4: 763.5156, found: 763.5155.

    20. [20]

      [15] General procedure for the preparation of compound 8a-e: A solution of 7c (1.0 mmol) and K2PtC14 (2.0 mmol) in distilled water (12 mL) was heated to 65-70℃ with stirring. The pH of the reaction solution was checked continuously and 1 mol/L NaOH was added to keep the pH in the range 3-4. Toward the end of the reaction, pH was adjusted to 6 with 0.1 mol/L NaOH. After the mixture was cooled to ambient temperature, the precipitate was filtered, washed three times with cold water, twice with ethanol, and once with diethyl ether, and dried in vacuo (87% yield) to afford compound 8c: yellow solid, mp: 237-239℃, Elemental analysis: Calcd. for C44H58O4N4Cl4Pt2 (%): C 42.66, H 4.72, N 4.52; Found: C 42.59, H 4.92, N 4.36. 8a: Offwhite solid, mp: 237-239℃, Elemental analysis: Calcd. for C42H54O4N4Cl4Pt2 (%): C 41.65, H 4.49, N 4.63; Found: C 41.79, H 4.52, N 4.61. 8b: Offwhite solid, mp: 234-236℃, Elemental analysis: Calcd. for C43H56O4N4Cl4Pt2 (%): C 42.16, H 4.61, N 4.57; Found: C 42.57, H 4.81, N 4.40. 8d: Offwhite solid, mp: 238-240℃, Elemental analysis: Calcd. for C45H60O4N4Cl4Pt2 (%): C 43.14, H 4.83, N 4.47; Found: C 43.30, H 4.68, N 4.64. 8e: Offwhite solid, mp: 228-230℃, Elemental analysis: Calcd. for C48H60O4N4Cl4Pt2 (%): C 44.52, H 5.14, N 4.33; Found: C 44.30, H 5.27, N 4.16.

    21. [21]

      [16] E. Schuhmann, J. Altman, K. Karaghiosoff, W. Beck, Bis[platinum(Ⅱ)] and bis[palladium( Ⅱ)] complexes of a,v-dicarboxylic acid bis(1,2,4-triaminobutane-N4) amides, Inorg. Chem. 34 (1995) 2316-2322.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    3. [3]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    7. [7]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    8. [8]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    9. [9]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    10. [10]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    11. [11]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    12. [12]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    13. [13]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    16. [16]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    17. [17]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    18. [18]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    19. [19]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    20. [20]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

Metrics
  • PDF Downloads(0)
  • Abstract views(608)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return