Citation: Hardik H. Jardosh, Chetan B. Sangani, Manish P. Patel, Ranjan G. Patel. One step synthesis of pyrido[1,2-a]benzimidazole derivatives of aryloxypyrazole and their antimicrobial evaluation[J]. Chinese Chemical Letters, ;2013, 24(2): 123-126. shu

One step synthesis of pyrido[1,2-a]benzimidazole derivatives of aryloxypyrazole and their antimicrobial evaluation

  • Corresponding author: Manish P. Patel, 
  • Received Date: 3 September 2012
    Available Online: 31 December 2012

  • A new series of pyrido[1,2-a]benzimidazole derivatives bearing the aryloxypyrazole nucleus have been synthesized by base-catalyzed cyclocondensation reaction through multi-component reaction (MCR) approach. All the synthesized compounds were investigated against a representative panel of pathogenic strains using broth microdilution minimum inhibitory concentration (MIC) method for their in vitro antimicrobial activity. Reviewing the data, majority of the compounds were found to be active against employed pathogens. SAR study explores that antimicrobial activity is strongly depends on the nature of the substituents at the ether linked aryl ring attached to the pyrazole unit, together with the substituent present on the C5 of the benzimidazole unit.
  • 加载中
    1. [1]

      [1] V. Aloush, S. Navon-Venezia, Y. Seigman-Igra, S. Cabili, Y. Carmeli, Multidrugresistant pseudomonas aeruginosa: risk factors and clinical impact, Antimicrob. Agents Chemother. 50 (2006) 43-48.

    2. [2]

      [2] H.G. Kathrotiya, N.A. Patel, R.G. Patel, M.P. Patel, An efficient synthesis of 3'-quinolinyl substituted imidazole-5-one derivatives catalyzed by zeolite and their antimicrobial activity, Chin. Chem. Lett. 23 (2012) 273-276.

    3. [3]

      [3] J.A. Makawana, M.P. Patel, R.G. Patel, Synthesis and in vitro antimicrobial activity of N-arylquinoline derivatives bearing 2-morpholinoquinoline moiety, Chin. Chem. Lett. 23 (2012) 427-430.

    4. [4]

      [4] H.H. Jardosh, M.P. Patel, Microwave-assisted CAN-catalyzed solventfree synthesis of N-allyl quinolone-based pyrano[4,3-b]chromene and benzopyrano[3,2-c]chromene derivatives and their antimicrobial activity, Med. Chem. Res. (2012), http://dx.doi.org/10.1007/s00044-012-0085-z.

    5. [5]

      [5] H.H. Jardosh, M.P. Patel, Lanthanum triflate-triggered synthesis of tetrahydroquinazolinone derivatives of N-allylquinolone and their biological assessment, J. Serb. Chem. Soc. 77 (2011) 1561-1570.

    6. [6]

      [6] H.H. Jardosh, M.P. Patel, Microwave-induced CAN promoted atom-economic synthesis of 1H-benzo[b]xanthene and 4H-benzo[g]chromene derivatives of Nallyl quinolone and their antimicrobial activity, Med. Chem. Res. (2012), http://dx.doi.org/10.1007/s00044-012-0301-x.

    7. [7]

      [7] N.K. Ladani, D.C. Mungra, M.P. Patel, R.G. Patel, Microwave assisted synthesis of novel Hantzsch 1 4-dihydropyridines, acridine-1,8-diones and polyhydroquinolines bearing the tetrazolo[1,5-a]quinoline moiety and their antimicrobial activity assess, Chin. Chem. Lett. 22 (2011) 1407-1410.

    8. [8]

      [8] C.B. Sangani, D.C. Mungra, M.P. Patel, R.G. Patel, Synthesis and antimicrobial screening of pyrano[32-c]chromene derivatives of 1H-pyrazoles, Cent. Eur. J. Chem. 9 (2011) 635-647.

    9. [9]

      [9] C.B. Sangani, D.C. Mungra, M.P. Patel, R.G. Patel, Synthesis and in vitro antimicrobial screening of new pyrano[43-b]pyrane derivatives of 1H-pyrazole, Chin. Chem. Lett. 23 (2012) 57-60.

    10. [10]

      [10] C.B. Sangani, N.M. Shah, M.P. Patel, R.G. Patel, Microwave assisted synthesis of novel 4H-chromene derivatives bearing phenoxypyrazole and their antimicrobial activity assess, J. Serb. Chem. Soc. 77 (2012) 1165-1174.

    11. [11]

      [11] L.S. Bai, Y. Wang, X.H. Liu, H.L. Zhu, B.A. Song, Novel dihydropyrazole derivatives linked with multi(hetero)aromatic ring: synthesis and antibacterial activity, Chin. Chem. Lett. 20 (2009) 427-430.

    12. [12]

      [12] M.M.M. Ramiz, I.S.A. Hafiz, M.A.M.A. Reheim, H.M. Gaber, Pyrazolones as building blocks in heterocyclic synthesis: synthesis of new pyrazolopyran, pyrazolopyridazine and pyrazole derivatives of expected antifungicidal activity, J. Chin. Chem. Soc. 59 (2012) 72-80.

    13. [13]

      [13] H.A. Abdel-Aziz, K.A. Al-Rashood, K.E.H. ElTahir, H.S. Ibrahim, Microwave-assisted synthesis of novel 34-bis-chalcone-N-arylpyrazoles and their anti-inflammatory activity, J. Chin. Chem. Soc. 58 (2011) 863-868.

    14. [14]

      [14] A.R. Trivedi, V.R. Bhuva, B.H. Dholariya, et al., Novel dihydropyrimidines as a potential new class of antitubercular agents, Bioorg. Med. Chem. Lett. 20 (2010) 6100-6102.

    15. [15]

      [15] M.D. Joksovic, V. Markovic, Z.D. Juranic, et al., Synthesis, characterization and antitumor activity of novel N-substituted a-amino acids containing ferrocenyl pyrazole-moiety, J. Organomet. Chem. 694 (2009) 3935-3942.

    16. [16]

      [16] D.M. Lyons, K.M. Huttunen, K.A. Browne, et al., Inhibition of the cellular function of perforin by 1-amino-24-dicyanopyrido[1,2-a]benzimidazoles, Bioorg. Med. Chem. 19 (2011) 4091-4100.

    17. [17]

      [17] A.J. Ndakala, R.K. Gessner, P.W. Gitari, et al., Antimalarial pyrido[12-a]benzimidazoles, J. Med. Chem. 54 (2011) 4581-4589.

    18. [18]

      [18] S.M. Rida, S.A.M. EI-Hawash, H.T.Y. Fahmy, A.A. Hazzaa, M.M. El-Meligy, Synthesis of novel benzofuran and related benzimidazole derivatives for evaluation of in vitro anti-HIV-1, anticancer and antimicrobial activities, Arch. Pharm. Res. 29 (2006) 826-833.

    19. [19]

      [19] National Committee for Clinical Laboratory Standards (NCCLS), 940, West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA. Performance standards for antimicrobial susceptibility testing; Twelfth Informational Supplement (ISBN 1-56238-454-6), M100-S12 M7 (2002).

    20. [20]

      [20] H.Q. Xiao, G.P. Ouyang, X.D. Sun, et al., Synthesis of pyrazole oxime esters, Chin. J. Synth. Chem. 13 (2005) 600-602.

    21. [21]

      [21] M.S. Park, H.J. Park, K.H. Park, K.I. Lee, Introduction of N-containing heterocycles into pyrazole by nucleophilic aromatic substitution, Synth. Commun. 34 (2004) 1541-1550.

    22. [22]

      [22] H. Dai, L. Shi, H.J. Zhang, et al., Synthesis and bioactivities of novel 1-phenyl-3-methyl-5-aryloxy-1H-pyrazole-4-carbaldehyde-O-((2-chloropyridin-5-yl)methyl) oximes, Chin. J. Org. Chem. 32 (2012) 1060-1066.

  • 加载中
    1. [1]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    4. [4]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    5. [5]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    6. [6]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    7. [7]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    8. [8]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    11. [11]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    12. [12]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    13. [13]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    14. [14]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    15. [15]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    16. [16]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    17. [17]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    20. [20]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

Metrics
  • PDF Downloads(0)
  • Abstract views(688)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return