Citation: Guo-Wei Li, Jia Xiao, Wen-Qin Zhang. Highly efficient Knoevenagel condensation reactions catalyzed by a proline-functionalized polyacrylonitrile fiber[J]. Chinese Chemical Letters, ;2013, 24(01): 52-54. shu

Highly efficient Knoevenagel condensation reactions catalyzed by a proline-functionalized polyacrylonitrile fiber

  • Corresponding author: Wen-Qin Zhang, 
  • Received Date: 25 October 2012
    Available Online: 30 November 2012

  • A new proline-functionalized fiber catalyst was employed for the first time to catalyze the Knoevenagel condensation reactions between aromatic aldehydes and ethyl cyanoacetate or malononitrile.This fiber catalyst exhibits a high efficiency(0.5-2 mol%of catalyst with yields of 90%-99%)and excellent reusability(up to 20 times)without the need for additional treatments.
  • 加载中
    1. [1]

      [1] R.Heydri,B.Tahamipour,Highly regioselective synthesis of dicyano-8a,10,11-trihydropyrrolo[1,2-a] [1,10] phenanthrolines via a domino Knoevenagel-cycliza-tion,Chin.Chem.Lett.22(2011)1281-1284.

    2. [2]

      [2] G.Bartoli,M.Bosco,A.Carlone,et al.,Magnesium perchlorate as efficient Lewis acid for the Knoevenagel condensation between b-diketones and aldehydes, Tetrahedron Lett.49(2008)2555-2557.

    3. [3]

      [3] N.Kan-nari,S.Okamura,S.Fujita,et al.,Nitrogen-doped carbon materials pre-pared by ammoxidation as solid base catalysts for Knoevenagel condensation and transesterification reactions,Adv.Synth.Catal.352(2010)1476-1484.

    4. [4]

      [4] D.Z.Xu,Y.Liu,S.Shi,et al.,A simple,efficient and green procedure for Knoevenagel condensation catalyzed by[C4dabco] [BF4] ionic liquid in water,Green Chem.12 (2010)514-517.

    5. [5]

      [5] S.Neogi,M.K.Sharma,P.K.Bharadwaj,Knoevenagel condensation and cyanosi-lylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(Ⅱ)centers,J.Mol.Catal.A:Chem.299(2009)1-4.

    6. [6]

      [6] F.Dong,Y.Q.Li,R.F.Dai,Knoevenagel condensation catalysed by poly(vinyl chloride)supported tetraethylenepentamine(PVC-TEPÅChin.Chem.Lett.18 (2007)266-268.

    7. [7]

      [7] K.P.Boroujeni,M.Jafarinasab,Polystyrene-supported chloroaluminate ionic liq-uid as a new heterogeneous Lewis acid catalyst for Knoevenagel condensation, Chin.Chem.Lett.23(2012)1067-1070.

    8. [8]

      [8] S.Mukherjee,J.W.Yang,S.Hoffmann,et al.,Asymmetric enamine catalysis,Chem. Rev.107(2007)5471-5569.

    9. [9]

      [9] L.Zare,M.Nikpassand,Multicomponent synthesis of dihydropyridines catalyzed by L-proline,Chin.Chem.Lett.22(2011)531-534.

    10. [10]

      [10] B.List,R.A.Lerner,C.F.Barbas Ⅲ,Proline-catalyzed direct asymmetric aldol reactions,J.Am.Chem.Soc.122(2000)2395-2396.

    11. [11]

      [11] B.List,P.Pojarliev,W.T.Biller,et al.,The proline-catalyzed direct asymmetric three-component Mannich reaction:scope,optimization,and application to the highly enantioselective synthesis of 1,2-amino alcohols,J.Am.Chem.Soc.124 (2002)827-833.

    12. [12]

      [12] J.N.Moorthy,S.Saha,C3-Symmetric proline-functionalized organocatalysts: enantioselective Michael addition reactions,Eur.J.Org.Chem.(2010) 6359-6365.

    13. [13]

      [13] J.Shen,J.Guo,Y.Sun,et al.,Knoevenagel condensation catalyzed by immobilized ionic liquids-proline on SBA-15,Chin.J.Catal.31(2010)827-832.

    14. [14]

      [14] G.Cardillo,S.Fabbroni,L.Gentilucci,et al.,A straightforward method for the synthesis of alkylidene and arylidene malonates through proline-catalyzed Knoe-venagel condensation,Synth.Commun.33(2003)1587-1594.

    15. [15]

      [15] The preparation and characterization of the fiber catalyst are similar as "J.Xiao, G.W.Li,W.Q.Zhang,Aldol reactions catalyzed by a proline functionalized polyacrylonitrile fiber,accepted by Chemical Research in Chinese Universities, ID:2012e236" .To avoid repetition,this section was placed in the supplementary material.

    16. [16]

      [16] O.M.Vatutsina,V.S.Soldatov,V.I.Sokolova,et al.,A new hybrid(polymer/inorganic)fibrous sorbent for arsenic removal from drinking water,React.Funct. Polym.67(2007)184-201.

    17. [17]

      [17] G.W.Li,J.Xiao,W.Q.Zhang,Knoevenagel condensation catalyzed by a tertiary-amine functionalized polyacrylonitrile fiber,Green Chem.13(2011) 1828-1836.

  • 加载中
    1. [1]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    2. [2]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    3. [3]

      Zhenghua ZHAOYufeng LIUQing ZHANGZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of zinc(Ⅱ), nickel(Ⅱ) and cadmium(Ⅱ) complexes constructed from a terphenyl-tricarboxylate ligand. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 170-180. doi: 10.11862/CJIC.20250161

    4. [4]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    5. [5]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    6. [6]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    7. [7]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    8. [8]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    9. [9]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    10. [10]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    11. [11]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    12. [12]

      Cheng WangLi ZhouZhenghao FeiYanqing WangYukou Du . Surface dynamic reconstruction of Ni-based catalysts for electrooxidation reaction. Chinese Chemical Letters, 2025, 36(12): 111746-. doi: 10.1016/j.cclet.2025.111746

    13. [13]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    14. [14]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    15. [15]

      Yangping ZhangTianpeng LiuJun YuZhengying WuDongqiong WangYukou Du . Amorphous/crystalline AgS@CoS core@shell catalysts for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(8): 110275-. doi: 10.1016/j.cclet.2024.110275

    16. [16]

      Chi ZhangZhilong WangXinyue WangYufei ZhangZhiguo ZhangAn ChenJinjin LiXitian ZhangLili Wu . Chip−like high−entropy oxide catalysts enhance fast sulfur evolution reaction for long−life lithium−sulfur batteries. Chinese Chemical Letters, 2025, 36(12): 110551-. doi: 10.1016/j.cclet.2024.110551

    17. [17]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    18. [18]

      Mengzhao LiuJie YinChengjian WangWeiji WangYuan GaoMengxia YanPing Geng . P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(9): 111271-. doi: 10.1016/j.cclet.2025.111271

    19. [19]

      Kuanhong CaoSainan ChuYuanhua DingShanming LuLei YuJuan Du . Sustainable Se/C catalysts from carbohydrates: Unlocking oxidative deoximation reaction with high turnover numbers via free radical mechanisms. Chinese Chemical Letters, 2026, 37(1): 111486-. doi: 10.1016/j.cclet.2025.111486

    20. [20]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

Metrics
  • PDF Downloads(0)
  • Abstract views(1243)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return