Citation: Juan Yang, Xing-Bin Yan, Jiang-Tao Chen, Dong-Fei Sun, Qun-Ji Xue. Synthesis and field emission properties of carbon nanotube films modified with amorphous carbon nanoparticles by a simple electrodeposition method[J]. Chinese Chemical Letters, ;2014, 25(2): 375-379. shu

Synthesis and field emission properties of carbon nanotube films modified with amorphous carbon nanoparticles by a simple electrodeposition method

  • Corresponding author: Xing-Bin Yan, 
  • Received Date: 7 September 2013
    Available Online: 14 October 2013

    Fund Project:

  • Amorphous carbon nanoparticles (a-CNPs) on a multi-walled carbon nanotube (MWCNT) film, deposited on a silicon substrate, were synthesized using an electrodeposition combination from a methanol suspension of polydiallyldimethylammonium chloride-modified MWCNTs. A low-voltage electrophoretic deposition of the MWCNTs and a high-voltage electrochemical deposition of the a-CNPs were carried out to yield homogenously attached a-CNPs on the surfaces of the MWCNTs, and form a composite film with good adhesion to the substrate. This scalable technology can produce a large area of a-CNP/MWCNT film. And the field emission investigations show that the a-CNP/MWCNT film has turnon electric field of 3.17 V μm-1 (at 10 μA cm-2) and threshold field of 4.62 V μm-1 (at 1 mA cm-2), which are lower than those of the MWCNT film. The a-CNP/MWCNT film can be deposited simply with large areas and may be a promising cathode material applied in field emission displays.
  • 加载中
    1. [1]

      [1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

    2. [2]

      [2] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605.

    3. [3]

      [3] W. Lee, J. Lee, W. Yi, S.H. Han, Electric-field enhancement of photovoltaic devices: a third reason for the increase in the efficiency of photovoltaic devices by carbon nanotubes, Adv. Mater. 22 (2010) 2264-2267.

    4. [4]

      [4] S. Mallakpour, M. Hatami, A.A. Ensafi, H. Karimi-Maleh, Synthesis and characterization of novel dopamine-derivative: application of modified multi-wall carbon nanotubes paste electrode for electrochemical investigation, Chin. Chem. Lett. 22 (2011) 185-188.

    5. [5]

      [5] K.S. Hazra, P. Rai, R. Mohapatra, et al., Dramatic enhancement of the emission current density from carbon nanotube based nanosize tips with extremely low onset fields, ACS Nano. 3 (2009) 2617-2622.

    6. [6]

      [6] Y. Shiratori, S. Noda, Combinatorial evaluation for field emission properties of carbon nanotubes part Ⅱ: high growth rate system, J. Phys. Chem. C 114 (2010) 12938-12947.

    7. [7]

      [7] X. Zhao, B.T.T. Chu, B. Ballesteros, et al., Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors, Nanotechnology 20 (2009) 065605.

    8. [8]

      [8] H. Ko, V.V. Tsukruk, Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors, Nano Lett. 6 (2006) 1443-1448.

    9. [9]

      [9] J. Cho, K. Konopka, K. Roz˙ niatowski, et al., Characterisation of carbon nanotube films deposited by electrophoretic deposition, Carbon 47 (2009) 58-67.

    10. [10]

      [10] B. Gao, G.Z. Yue, Q. Qiu, et al., Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition, Adv. Mater. 13 (2001) 1770-1773.

    11. [11]

      [11] J. Yang, S.L. Bai, R.X. Luo, et al., Electrodeposition of SnO2 nanocrystalline thin film using butyl-rhodamine B as a structure-directing agent, Chin. Chem. Lett. 21 (2010) 1505-1508.

    12. [12]

      [12] X.B. Yan, T. Xu, S.R. Yang, H.W. Liu, Q.J. Xue, Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate, J. Phys. D: Appl. Phys. 37 (2004) 2416-2424.

    13. [13]

      [13] T. Sowers, B.L. Ward, S.L. English, R.J. Nemanicha, Measurement of field emission from nitrogen-doped diamond films, Diam. Relat. Mater. 9 (2000) 1569-1573.

    14. [14]

      [14] J. Robertson, Mechanisms of electron field emission from diamond, diamondlike carbon, and nanostructured carbon, J. Vac. Sci. Technol. B 17 (1999) 659-665.

    15. [15]

      [15] Y. Umehara, S. Murai, Y. Koide, M. Murakami, Effects of sp2/sp3 bonding ratios on field emission properties of diamond-like carbon films grown by microwave plasma chemical vapor deposition, Diam. Relat. Mater. 11 (2002) 1429-1435.

    16. [16]

      [16] X.B. Yan, T. Xu, G. Chen, H.W. Liu, S.R. Yang, Effect of deposition voltage on the microstructure of electrochemically deposited hydrogenated amorphous carbon films, Carbon 42 (2004) 3103-3108.

    17. [17]

      [17] X.B. Yan, T. Xu, S.S. Yue, et al., Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor, Diam. Relat. Mater. 14 (2005) 1342-1347.

    18. [18]

      [18] X.B. Yan, T. Xu, S. Xu, et al., Fabrication of carbon spheres on a-C:H films by heattreatment of a polymer precursor, Carbon 42 (2004) 2769-2771.

    19. [19]

      [19] S.W. Lei, Q.G. Guo, J.L. Shi, L. Liu, Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength, Carbon 48 (2010) 2644-2646.

    20. [20]

      [20] Y.F. Lu, S.M. Huang, C.H.A. Huan, X.F. Luo, Amorphous hydrogenated carbon synthesized by pulsed laser deposition from cyclohexane, Appl. Phys. A 68 (1999) 647-651.

    21. [21]

      [21] S.H. Wan, H.Y. Hu, G. Chen, J.Y. Zhang, Synthesis and characterization of high voltage electrodeposited phosphorus doped DLC films, Electrochem. Commun. 10 (2008) 461-465.

    22. [22]

      [22] X.B. Yan, T. Xu, G. Chen, et al., Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate, J. Phys. D: Appl. Phys. 37 (2004) 907-913.

    23. [23]

      [23] X.B. Yan, T. Xu, S. Xu, H.W. Liu, S.R. Yang, Field emission properties of polymerconverted carbon films by heat treatment, Solid State Commun. 133 (2005) 113-116.

    24. [24]

      [24] X.B. Yan, T. Xu, G. Chen, S. Xu, S.R. Yang, Field-emission properties of diamondlike- carbon and nitrogen-doped diamond-like-carbon films prepared by electrochemical deposition, Appl. Phys. A: Mater. 81 (2005) 41-46.

    25. [25]

      [25] B.S. Satyanarayana, A. Hart, W.I. Milne, J. Robertson, Field emission from tetrahedral amorphous carbon, Appl. Phys. Lett. 71 (1997) 1430-1432.

    26. [26]

      [26] P.J. Zhang, J.T. Chen, R.F. Zhuo, et al., Carbon nanodot arrays grown as replicas of specially widened anodic aluminum oxide pore arrays, Appl. Surf. Sci. 255 (2009) 4456-4460.

    27. [27]

      [27] L. Nilsson, O. Groening, C. Emmenegger, et al., Scanning field emission from patterned carbon nanotube films, Appl. Phys. Lett. 76 (2000) 2071-2073.

    28. [28]

      [28] X.H. Zhang, L. Gong, K. Liu, et al., Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode, Adv. Mater. 22 (2010) 5292-5296.

  • 加载中
    1. [1]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    2. [2]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    3. [3]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    4. [4]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    5. [5]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    10. [10]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    11. [11]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    12. [12]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    13. [13]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    14. [14]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    15. [15]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    16. [16]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    17. [17]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    18. [18]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    19. [19]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    20. [20]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

Metrics
  • PDF Downloads(0)
  • Abstract views(682)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return