Citation: Juan Yang, Xing-Bin Yan, Jiang-Tao Chen, Dong-Fei Sun, Qun-Ji Xue. Synthesis and field emission properties of carbon nanotube films modified with amorphous carbon nanoparticles by a simple electrodeposition method[J]. Chinese Chemical Letters, ;2014, 25(2): 375-379.
-
Amorphous carbon nanoparticles (a-CNPs) on a multi-walled carbon nanotube (MWCNT) film, deposited on a silicon substrate, were synthesized using an electrodeposition combination from a methanol suspension of polydiallyldimethylammonium chloride-modified MWCNTs. A low-voltage electrophoretic deposition of the MWCNTs and a high-voltage electrochemical deposition of the a-CNPs were carried out to yield homogenously attached a-CNPs on the surfaces of the MWCNTs, and form a composite film with good adhesion to the substrate. This scalable technology can produce a large area of a-CNP/MWCNT film. And the field emission investigations show that the a-CNP/MWCNT film has turnon electric field of 3.17 V μm-1 (at 10 μA cm-2) and threshold field of 4.62 V μm-1 (at 1 mA cm-2), which are lower than those of the MWCNT film. The a-CNP/MWCNT film can be deposited simply with large areas and may be a promising cathode material applied in field emission displays.
-
-
[1]
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
-
[2]
[2] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605.
-
[3]
[3] W. Lee, J. Lee, W. Yi, S.H. Han, Electric-field enhancement of photovoltaic devices: a third reason for the increase in the efficiency of photovoltaic devices by carbon nanotubes, Adv. Mater. 22 (2010) 2264-2267.
-
[4]
[4] S. Mallakpour, M. Hatami, A.A. Ensafi, H. Karimi-Maleh, Synthesis and characterization of novel dopamine-derivative: application of modified multi-wall carbon nanotubes paste electrode for electrochemical investigation, Chin. Chem. Lett. 22 (2011) 185-188.
-
[5]
[5] K.S. Hazra, P. Rai, R. Mohapatra, et al., Dramatic enhancement of the emission current density from carbon nanotube based nanosize tips with extremely low onset fields, ACS Nano. 3 (2009) 2617-2622.
-
[6]
[6] Y. Shiratori, S. Noda, Combinatorial evaluation for field emission properties of carbon nanotubes part Ⅱ: high growth rate system, J. Phys. Chem. C 114 (2010) 12938-12947.
-
[7]
[7] X. Zhao, B.T.T. Chu, B. Ballesteros, et al., Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors, Nanotechnology 20 (2009) 065605.
-
[8]
[8] H. Ko, V.V. Tsukruk, Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors, Nano Lett. 6 (2006) 1443-1448.
-
[9]
[9] J. Cho, K. Konopka, K. Roz˙ niatowski, et al., Characterisation of carbon nanotube films deposited by electrophoretic deposition, Carbon 47 (2009) 58-67.
-
[10]
[10] B. Gao, G.Z. Yue, Q. Qiu, et al., Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition, Adv. Mater. 13 (2001) 1770-1773.
-
[11]
[11] J. Yang, S.L. Bai, R.X. Luo, et al., Electrodeposition of SnO2 nanocrystalline thin film using butyl-rhodamine B as a structure-directing agent, Chin. Chem. Lett. 21 (2010) 1505-1508.
-
[12]
[12] X.B. Yan, T. Xu, S.R. Yang, H.W. Liu, Q.J. Xue, Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate, J. Phys. D: Appl. Phys. 37 (2004) 2416-2424.
-
[13]
[13] T. Sowers, B.L. Ward, S.L. English, R.J. Nemanicha, Measurement of field emission from nitrogen-doped diamond films, Diam. Relat. Mater. 9 (2000) 1569-1573.
-
[14]
[14] J. Robertson, Mechanisms of electron field emission from diamond, diamondlike carbon, and nanostructured carbon, J. Vac. Sci. Technol. B 17 (1999) 659-665.
-
[15]
[15] Y. Umehara, S. Murai, Y. Koide, M. Murakami, Effects of sp2/sp3 bonding ratios on field emission properties of diamond-like carbon films grown by microwave plasma chemical vapor deposition, Diam. Relat. Mater. 11 (2002) 1429-1435.
-
[16]
[16] X.B. Yan, T. Xu, G. Chen, H.W. Liu, S.R. Yang, Effect of deposition voltage on the microstructure of electrochemically deposited hydrogenated amorphous carbon films, Carbon 42 (2004) 3103-3108.
-
[17]
[17] X.B. Yan, T. Xu, S.S. Yue, et al., Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor, Diam. Relat. Mater. 14 (2005) 1342-1347.
-
[18]
[18] X.B. Yan, T. Xu, S. Xu, et al., Fabrication of carbon spheres on a-C:H films by heattreatment of a polymer precursor, Carbon 42 (2004) 2769-2771.
-
[19]
[19] S.W. Lei, Q.G. Guo, J.L. Shi, L. Liu, Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength, Carbon 48 (2010) 2644-2646.
-
[20]
[20] Y.F. Lu, S.M. Huang, C.H.A. Huan, X.F. Luo, Amorphous hydrogenated carbon synthesized by pulsed laser deposition from cyclohexane, Appl. Phys. A 68 (1999) 647-651.
-
[21]
[21] S.H. Wan, H.Y. Hu, G. Chen, J.Y. Zhang, Synthesis and characterization of high voltage electrodeposited phosphorus doped DLC films, Electrochem. Commun. 10 (2008) 461-465.
-
[22]
[22] X.B. Yan, T. Xu, G. Chen, et al., Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate, J. Phys. D: Appl. Phys. 37 (2004) 907-913.
-
[23]
[23] X.B. Yan, T. Xu, S. Xu, H.W. Liu, S.R. Yang, Field emission properties of polymerconverted carbon films by heat treatment, Solid State Commun. 133 (2005) 113-116.
-
[24]
[24] X.B. Yan, T. Xu, G. Chen, S. Xu, S.R. Yang, Field-emission properties of diamondlike- carbon and nitrogen-doped diamond-like-carbon films prepared by electrochemical deposition, Appl. Phys. A: Mater. 81 (2005) 41-46.
-
[25]
[25] B.S. Satyanarayana, A. Hart, W.I. Milne, J. Robertson, Field emission from tetrahedral amorphous carbon, Appl. Phys. Lett. 71 (1997) 1430-1432.
-
[26]
[26] P.J. Zhang, J.T. Chen, R.F. Zhuo, et al., Carbon nanodot arrays grown as replicas of specially widened anodic aluminum oxide pore arrays, Appl. Surf. Sci. 255 (2009) 4456-4460.
-
[27]
[27] L. Nilsson, O. Groening, C. Emmenegger, et al., Scanning field emission from patterned carbon nanotube films, Appl. Phys. Lett. 76 (2000) 2071-2073.
-
[28]
[28] X.H. Zhang, L. Gong, K. Liu, et al., Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode, Adv. Mater. 22 (2010) 5292-5296.
-
[1]
-
-
[1]
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
-
[2]
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
-
[3]
Liwen Wang , Boyang Wang , Siyu Lu , Shubo Lv , Xiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497
-
[4]
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
-
[5]
Hang Meng , Bicheng Zhu , Ruolun Sun , Zixuan Liu , Shaowen Cao , Kan Zhang , Jiaguo Yu , Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410
-
[6]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[7]
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
-
[8]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[9]
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
-
[10]
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
-
[11]
Bohan Zhang , Bingzhe Wang , Guichuan Xing , Zikang Tang , Songnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358
-
[12]
Rui Cheng , Xin Huang , Tingting Zhang , Jiazhuang Guo , Jian Yu , Su Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278
-
[13]
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
-
[14]
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
-
[15]
Kang Wei , Jiayu Li , Wen Zhang , Bing Yuan , Ming-De Li , Pingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055
-
[16]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[17]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[18]
Yue WANG , Zhizhi GU , Jingyi DONG , Jie ZHU , Cunguang LIU , Guohan LI , Meichen LU , Jian HAN , Shengnan CAO , Wei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423
-
[19]
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
-
[20]
Qiang Fu , Shouhong Sun , Kangzhi Lu , Ning Li , Zhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(682)
- HTML views(4)