Citation: Guang-Yin Fan, Wen-Jun Huang. Synthesis of ruthenium/reduced graphene oxide composites and application for the selective hydrogenation of halonitroaromatics[J]. Chinese Chemical Letters, ;2014, 25(2): 359-363. shu

Synthesis of ruthenium/reduced graphene oxide composites and application for the selective hydrogenation of halonitroaromatics

  • Corresponding author: Guang-Yin Fan, 
  • Received Date: 11 July 2013
    Available Online: 5 November 2013

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (No. 21207109) (No. 21207109) Scientific Research Fund of Sichuan Provincial Education Department (No. 11ZA034) (No. 11ZA034)

  • Reduced graphene oxide (RGO) supported ruthenium (Ru) catalyst was prepared by an impregnation method using RuCl3 as a precursor and RGO as a support. The catalyst Ru/RGO was used for the selective hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN), showing a selectivity of 96% at complete conversion of p-CNB at 60 ℃ and 3.0 MPa H2. The Ru/RGO catalyst was extremely active for the hydrogenation of a series of nitroarenes, which can be attributed to the small sized and the fine dispersity of the Ru nanoparticles on the RGO sheets characterized by TEM. Moreover, the catalyst also can be recycled five times without the loss of activity.
  • 加载中
    1. [1]

      [1] J. Zhang, Y. Wang, H. Ji, et al., Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene, J. Catal. 229 (2005) 114-118.

    2. [2]

      [2] F.W. Zhang, J. Jin, X. Zhong, et al., Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions, Green Chem. 13 (2011) 1238-1243.

    3. [3]

      [3] C. Liang, J. Han, K. Shen, et al., Palladium nanoparticle microemulsions: formation and use in catalytic hydrogenation of o-chloronitrobenzene, Chem. Eng. J. 165 (2010) 709-713.

    4. [4]

      [4] Q. Xu, X.M. Liu, J.R. Chen, R.X. Li, X.J. Li, Modification mechanism of Sn4+ for hydrogenation of p-chloronitrobenzene over PVP-Pd/g-Al2O3, J. Mol. Catal. A: Chem 260 (2006) 299-305.

    5. [5]

      [5] C. Su, X.N. Li, Q.F. Zhang, et al., Behavior of adsorbed diphenyl-sulfide on the Pd/C catalyst for o-chloronitrobenzene hydrogenation, Chin. Chem. Lett. 24 (2013) 59-62.

    6. [6]

      [6] R. Nie, J. Wang, L. Wang, et al., Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes, Carbon 50 (2012) 586-596.

    7. [7]

      [7] Y. Motoyama, Y. Lee, K. Tsuji, et al., Platinum nanoparticles supported on nitrogendoped carbon nanofibers as efficient poisoning catalysts for the hydrogenation of nitroarenes, ChemCatChem 3 (2011) 1578-1581.

    8. [8]

      [8] K.L. Xu, Y. Zhang, X.R. Chen, et al., Convenient and selective hydrogenation of nitro aromatics with a platinum nanocatalyst under ambient pressure, Adv. Synth. Catal. 353 (2011) 1260-1264.

    9. [9]

      [9] Z. Sun, Y. Zhao, Y. Xie, et al., The solvent-free selective hydrogenation of nitrobenzene to aniline: an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes, Green Chem. 12 (2010) 1007-1011.

    10. [10]

      [10] W.X. Tu, S.J. Cao, L.P. Yang, W.C. Wang, Modification effects of magnetic supports and bimetallic structures on palladium nanocluster catalysts, Chem. Eng. J. 143 (2008) 244-248.

    11. [11]

      [11] Y. Motoyama, K. Kamo, H. Nagashima, Catalysis in polysiloxane gels: platinumcatalyzed hydrosilylation of polymethylhydrosiloxane leading to reusable catalysts for reduction of nitroarenes, Org. Lett. 11 (2009) 1345-1348.

    12. [12]

      [12] C. Antonetti, M. Oubenali, A.M.R. Galletti, P. Serp, G. Vannucci, Novel microwave synthesis of ruthenium nanoparticles supported on carbon nanotubes active in the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline, Appl. Catal. A 421 (2012) 99-107.

    13. [13]

      [13] M. Oubenali, G. Vanucci, B. Machado, et al., Hydrogenation of p-chloronitrobenzene over nanostructured-carbon-supported ruthenium catalysts, ChemSusChem 4 (2011) 950-956.

    14. [14]

      [14] J. Ning, J. Xu, J. Liu, et al., A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzene in ethanol, Catal. Commun. 8 (2007) 1763-1766.

    15. [15]

      [15] M. Liu, W. Yu, H. Liu, Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts, J. Mol. Catal. A: Chem. 138 (1999) 295-303.

    16. [16]

      [16] B. Zuo, Y. Wang, Q. Wang, et al., An efficient ruthenium catalyst for selective hydrogenation of ortho-chloronitrobenzene prepared via assembling ruthenium and tin oxide nanoparticles, J. Catal. 222 (2004) 493-498.

    17. [17]

      [17] M. Pietrowski, M. Zieliński, M. Wojciechowska, Selective reduction of chloronitrobenzene to chloroaniline on Ru/MgF2 catalysts, Catal. Lett. 128 (2009) 31-35.

    18. [18]

      [18] M. Pietrowski, M. Zieliński, M. Wojciechowska, High-selectivity hydrogenation of chloronitrobenzene to chloroaniline over magnesium fluoride-supported bimetallic ruthenium-copper catalysts, Chem. Cat. Chem. 3 (2011) 835-838.

    19. [19]

      [19] M. Pietrowski, M. Wojciechowska, An efficient ruthenium-vanadium catalyst for selective hydrogenation of ortho-chloronitrobenzene, Catal. Today 142 (2009) 211-214.

    20. [20]

      [20] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, et al., Improved synthesis of graphene oxide, ACS Nano 4 (2010) 4806-4814.

    21. [21]

      [21] X. Xu, X. Li, H. Gu, Z. Huang, X. Yan, A highly active and chemoselective assembled Pt/C (Fe) catalyst for hydrogenation of o-chloronitrobenzene, Appl. Catal. A 429- 430 (2012) 17-23.

    22. [22]

      [22] J.B. Goodenough, R. Manoharan, A. Shukla, K.V. Ramesh, Intraalloy electron transfer and catalyst performance: a spectroscopic and electrochemical study, Chem. Mater. 1 (1989) 391-398.

    23. [23]

      [23] S. Liu, J. Tian, L. Wang, et al., Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing, Biosens. Bioelectron. 26 (2011) 4491-4496.

  • 加载中
    1. [1]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    2. [2]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    3. [3]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    4. [4]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    5. [5]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    6. [6]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    7. [7]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    8. [8]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    11. [11]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    12. [12]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    13. [13]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    14. [14]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    15. [15]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    16. [16]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    17. [17]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    18. [18]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    19. [19]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    20. [20]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

Metrics
  • PDF Downloads(0)
  • Abstract views(789)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return