Citation: De-Rong Ji, Hua Yang, Xiao-Jing Zhao, Hao Yang, Yang-Zhao Liu, Dai-Hui Liao, Chun Feng, Cheng-Gang Zhang. Oxidative intramolecular coupling of 2, 3-disubstituted phenyl acrylic acids and derivatives promoted by di-tert-butylperoxide[J]. Chinese Chemical Letters, ;2014, 25(2): 348-350. shu

Oxidative intramolecular coupling of 2, 3-disubstituted phenyl acrylic acids and derivatives promoted by di-tert-butylperoxide

  • Corresponding author: Cheng-Gang Zhang, 
  • Received Date: 6 July 2013
    Available Online: 23 October 2013

    Fund Project: The authors are grateful to Sichuan Provincial Education Department (No. 12ZA141) (No. 12ZA141)Key Laboratory of Advanced Functional Materials of Sichuan Province Higher Education System (No. KFKT2013-01) (No. KFKT2013-01)Sichuan Normal University (No. XYZ2013- 14-37) for financial support. (No. XYZ2013- 14-37)

  • Polymethoxy-substituted phenanthrene-9-carboxylic acids or theirmethylate are key intermediates for the synthesis of tylophora alkaloids and their analogs. An intramolecular oxidative coupling reaction of unfunctionalized 2,3-disubstituted phenyl acrylic acids and derivatives promoted by di-tert-butylperoxide gave above intermediates in high yields. The mild reaction conditions and easy purification procedures of this method provide a new approach for the synthesis of phenanthrenes.
  • 加载中
    1. [1]

      [1] (a) V. Ritleng, C. Sirlin, M. Pfeffer, Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates: reactions and mechanistic aspects, Chem. Rev. 102 (2002) 1731-1770; (b) Y.Q. He, N.N. Zhang, Y. Liu, et al., Facile synthesis and excellent catalytic activity of gold nanoparticles on graphene oxide, Chin. Chem. Lett. 23 (2012) 41- 44; (c) W.P. Mai, H.H. Wang, J.W. Yuan, L.R. Yang, Z.C. Li, Palladium-catalyzed suzuki couplings using a novel diaminophosphine oxide as ligand, Chin. Chem. Lett. 23 (2012) 521-524.

    2. [2]

      [2] (a) T. Naota, H. Takaya, S.I. Muragashi, Ruthenium-catalyzed reactions for organic synthesis, Chem. Rev. 98 (1998) 2599-2660; (b) D.F. Wu, M.J. Yang, Y. Wang, G.W. Gao, J. Men, A facile and efficient synthetic method for 4-phenylethynylphthalic anhydride, Chin. Chem. Lett. 22 (2011) 159- 162.

    3. [3]

      [3] X.W. Guo, Z.P. Li, C.J. Li, Cross-dehydrogenative-coupling (CDC) reaction, Prog. Chem. 22 (2010) 1434-1441.

    4. [4]

      [4] Z.P. Li, C.J. Li, CuBr-catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom, J. Am. Chem. Soc. 126 (2004) 11810-11811.

    5. [5]

      [5] (a) C. Bolm, J. Legros, J. Le Pail, L. Zani, Iron-catalyzed reactions in organic synthesis, Chem. Rev. 104 (2004) 6217-6254; (b) Y. Song, X.S. Tang, X.M. Hou, Y.J. Bai, Advances of iron(Ⅲ) chloride-catalyzed organic reactions, Chin. J. Org. Chem. 33 (2013) 76-89.

    6. [6]

      [6] K.L. Hull, E.L. Lanni, M.S. Sanford, Highly regioselective catalytic oxidative coupling reactions: synthetic and mechanistic investigations, J. Am. Chem. Soc. 128 (2006) 14047-14049.

    7. [7]

      [7] G.J. Deng, C.J. Li, Sc(OTf)3-catalyzed direct alkylation of quinolines and pyridines with alkanes, Org. Lett. 11 (2009) 1171-1174.

    8. [8]

      [8] A. Sud, D. Sureshkumar, M. Klussmann, Oxidative coupling of amines and ketones by combined vanadium- and organocatalysis, Chem. Commun. (2009) 3169- 3171.

    9. [9]

      [9] Z.G. Li, Z. Jin, R.Q. Huang, Isolation, total synthesis and biological activity of phenanthroindolizidine and phenanthroquinolizidine alkaloids, Synthesis (2001) 2365-2378.

    10. [10]

      [10] C.G. Zhang, J.J. Li, X.H. Wang, C. Feng, B.Q. Wang, Progress on relationship of tylophora alkaloids and their antitumor activity, Chin. J. Med. Chem. 20 (2010) 379-388.

    11. [11]

      [11] (a) K. Kim, T. Lee, E. Lee, et al., Asymmetric total syntheses of (-)-antofine and (-)- cryptopleurine using (R)-(E)-4-(tributylstannyl)but-3-en-2-ol, J. Org. Chem. 69 (2004) 3144-3149; (b) A. Camacho-Davila, J.W. Herndon, Total synthesis of antofine using the net [5 + 5]-cycloaddition of γ,δ-unsaturated carbene complexes and 2-alkynylphenyl ketones as a key step, J. Org. Chem. 71 (2006) 6682-6685; (c) K. Kim, Y.M. Lee, J. Lee, et al., Expedient syntheses of antofine and cryptopleurine via intramolecular 1,3-dipolar cycloaddition, J. Org. Chem. 72 (2007) 4886-4891.

    12. [12]

      [12] (a) D.A. Evans, C.J. Dinsmore, D.A. Evrard, K.M. Devries, Oxidative coupling of arylglycine-containing peptides. A biomimetic approach to the synthesis of the macrocyclic actinoidinic-containing vancomycin subunit, J. Am. Chem. Soc. 115 (1993) 6426-6427; (b) E.C. Taylor, J.G. Andrade, G.J.H. Rall, A. Mckillop, Thallium in organic synthesis. 59. Alkaloid synthesis via intramolecular nonphenolic oxidative coupling. Preparation of (±)-ocoteine, (±)-acetoxyocoxylonine, (±)-3-methoxy-n-acetylnornantenine, (±)-neolitsine, (±)-kreysigine, (±)-O-methylkreysigine, and (±)- multifloramine, J. Am. Chem. Soc. 102 (1980) 6513-6519; (c) K.L. Wang, M.Y. Lü, Q.M. Wang, R.Q. Huang, Iron(Ⅲ) chloride-based mild synthesis of phenanthrene and its application to total synthesis of phenanthroindolizidine alkaloids, Tetrahedron 64 (2008) 7504-7510.

    13. [13]

      [13] D.R. Ji, L.D. Su, C.G. Zhang, Intramolecular oxidative coupling reaction of 4- phenylmethyl-ene-3-isochromanones with 2,3-dichloro-5,6-dicyanobenzo-quinone as an oxidant, Chin. J. Org. Chem. 32 (2012) 2334-2338.

    14. [14]

      [14] Z.W. Wang, M. Wu, Y. Wang, et al., Synthesis and SAR studies of phenanthroindolizidine and phenanthroquinolizidine alkaloids as potent anti-tumor agents, Eur. J. Med. Chem. 51 (2012) 250-258.

    15. [15]

      [15] K.L. Wang, M.Y. Lü, A. Yu, X.Q. Zhu, Q.M. Wang, Iron(Ⅲ) chloride catalyzed oxidative coupling of aromatic nuclei, J. Org. Chem. 74 (2009) 935-938.

    16. [16]

      [16] T.F. Buckley Ⅲ, R. Henry, Amino acids as chiral educts for asymmetric products. Chirally specific syntheses of tylophorine and cryptopleurine, J. Org. Chem. 48 (1983) 4222-4232.

  • 加载中
    1. [1]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    2. [2]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    3. [3]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    4. [4]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    5. [5]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    6. [6]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    7. [7]

      Chu ChuYuancheng QinCailing NiJianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616

    8. [8]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    9. [9]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    10. [10]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    11. [11]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    12. [12]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    13. [13]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    14. [14]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    15. [15]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    18. [18]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    19. [19]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    20. [20]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

Metrics
  • PDF Downloads(0)
  • Abstract views(834)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return