Citation: YANG Wei-ya, LING Feng-xiang, ZHANG Xi-wen, WANG Shao-jun, YANG Chun-yan, SHEN Zhi-qi, ZHENG Qin-hua. Effect of silicon source on synthesis and physicochemical properties of MCM-22 zeolite[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(7): 883-888. shu

Effect of silicon source on synthesis and physicochemical properties of MCM-22 zeolite

Figures(4)

  • The effects of silicon source on the synthesis and physicochemical properties of MCM-22 zeolite were studied by using silica sol, fumed silica, silicic acid and silica gel as synthesis materials under dynamic hydrothermal conditions. MCM-22 zeolite with high crytallinity and purity was synthesized by using silica sol, silica, silicic acid and silica gel as silicon sources. The average sizes of zeolite particle are 190, 220 and 750 nm, respectively. Three silicon sources can affect the aggregate morphology of the zeolites, which are grain dispersion, grain semi dispersion and grain aggregation. The distribution of acid strength of the three groups of samples are almost same, all of them have more medium and strong acidity, and the total acid content of zeolite synthesized by fumed silica is the highest. MCM-22 obtained from silica sol and silicic acid has higher B/L acid ratios in the range of medium strong acid. The results of NMR show that the main aluminum in the samples is skeleton aluminum without obvious non-skeleton aluminum. MCM-22 zeolite can not be obtained when silica gel is used as silicon source because silica gel can adsorb the free water in the preparation system, suppressing the hydrothermal reaction. The reaction conditions should be carefully set up when silica gel is used as silicon source to prepare zeolite.
  • 加载中
    1. [1]

      HAN Wen-wen, WANG Qin-tao, LV Jing-hui, LI Xiao-nian. Research progress of MCM-22 molecular sieve in alkylation[J]. Mod Chem Ind, 2017, 37(10): 20-24. 

    2. [2]

      LI Dan, GENG Nan-kun, ZHAN Ke, MING Hui, ZHOU Dan, XIA Qing-hua. Hierarchical MCM-22 as an efficient catalyst for the isomerization of α-pinene[J]. J Hubei Univ (Nat Sci), 2017,39(4):405-410. doi: 10.3969/j.issn.1000-2375.2017.04.013

    3. [3]

      YANG J, CHU J, WANG J, YIN D, LU J, ZHANG Y. Synthesis and catalytic performance of hierarchical MCM-22 zeolite aggregates with the assistance of carbon particles and fluoride ions[J]. Chin J Catal, 2014,35(1):49-57.  

    4. [4]

      DOS SANTOS M B, ANDRADE H M C, MASCARENHAS A J S. Oxidative dehydration of glycerol over alternative H, Fe-MCM-22 catalysts:Sustainable production of acrylic acid[J]. Microporous Mesoporous Mater, 2019,278:366-377.  

    5. [5]

      WANG C, WANG Y, XIE Z. Understanding zeolites catalyzed methanol-to-olefins conversion from theoretical calculations[J]. Chin J Chem, 2018,36(5):381-386.  

    6. [6]

      RUTKOWSKA M, DÍAZ U, PALOMARES A E, CHMIELARZ L. Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNOx process[J]. Appl Catal B:Environ, 2015,168-169:531-539. doi: 10.1016/j.apcatb.2015.01.016

    7. [7]

      WANG Zhen-dong, LIU Chuang, SUN Hong-min, SHEN Zhen-hao, YANG Wei-min. MCM-22 zeolites synthesized with different organic structure-directing agents and catalytic performances[J]. Petrochem Technol, 2020,49(3):209-213. doi: 10.3969/j.issn.1000-8144.2020.03.001

    8. [8]

      WANG Bao-yu. The influences of various crystal seeds on the synthesis of MCM-22 molecular sieve[J]. J Luoyang Normal Univ, 2016,35(11):29-31.  

    9. [9]

      TEMPELMAN C H L, PORTILLA M T, MARTíNEZ-ARMERO M E, MEZARI B, DE CALUWÉ N G R, MARTÍNEZ C, HENSEN E J M. One-pot synthesis of nano-crystalline MCM-22[J]. Microporous Mesoporous Mater, 2016,220:28-38. doi: 10.1016/j.micromeso.2015.08.018

    10. [10]

      REN Hua-ping, TIAN Shao-peng, MA Qiang, DING Si-yi, LI Xiao-li, GAO Jian. Synthesis of MCM-22 molecular sieve from Attapulgite: CN, 106517235B[P]. 2019-02-19.

    11. [11]

      OGURA M, INOUE K, YAMAGUCHI T. A mechanistic study on the synthesis of MCM-22 from SBA-15 by dry gel conversion to form a micro-and mesoporous composite[J]. Catal Today, 2011,168(1):118-123. doi: 10.1016/j.cattod.2010.12.046

    12. [12]

      DOS SANTOS E R F, SOUSA A B, LEITE R C N, LABORDE H M, MENEZES R R, FREIRE RODRIGUES M G. Preparation of zeolite MCM-22 using the rice husk ash as silica source[J]. Mater Sci Forum, 2014,805:646-650. doi: 10.4028/www.scientific.net/MSF.805.646

    13. [13]

      CHENG Y, LU M, LI J, SU X, PAN S, JIAO C, FENG M. Synthesis of MCM-22 zeolite using rice husk as a silica source under varying-temperature conditions[J]. J Colloid Interface Sci, 2012,369(1):388-394. doi: 10.1016/j.jcis.2011.12.024

    14. [14]

      THAKKAR R, BANDYOPADHYAY R. Preparation, characterization, and post-synthetic modification of layered MCM-22 zeolite precursor[J]. J Chem Sci, 2017,129(11):1671-1676. doi: 10.1007/s12039-017-1366-3

    15. [15]

      ZHU Kui, LI Yang, LIU Han-wen, JIA Ji-wei, SUN Shu-ming, LIU Zhi-gang. Application of white carbon black in ZSM-5 molecular sieve industrial synthesis[J]. Ind Catal, 2018,26(5):151-154. doi: 10.3969/j.issn.1008-1143.2018.05.025

    16. [16]

      ZHANG Pei-shan, MA Bo, YANG Wei-ya, LING Feng-xiang, SHEN Zhi-qi, WANG Shao-jun, HOU Yu-xin. Synthesis and characterization of core-shell Beta/MCM-22 micro-microporous composite zeolites[J]. J Fuel Chem Technol, 2014,42(10):1240-1245. doi: 10.3969/j.issn.0253-2409.2014.10.013 

    17. [17]

      YANG Ruo-chen, MA Bo, LING Feng-xiang, YANG Wei-ya, SHEN Zhi-qi, WANG Lei. Synthesis and characterization of zeolite MCM-22[J]. Petrochem Technol, 2012,41(1):19-21.  

    18. [18]

      CORMA A, DIAZ U, FORNÉS V, GUIL J M, MARTÍNEZ-TRIGUERO J, CREYGHTON E J. Characterization and catalytic activity of MCM-22 and MCM-56 compared with ITQ-2[J]. J Catal, 2000,191(1):218-224.  

    19. [19]

      YU Zhi-wu, WANG Qiang, CHEN Lei, DENG Feng. Brønsted/Lewis acid sites synergy in H-MCM-22 zeolite studied by 1H and 27Al DQ-MAS NMR spectroscopy[J]. Chin J Catal, 2012,33(1):2140-2150.  

    20. [20]

      VAN MILTENBURG A, PAWLESA J, BOUZGA A M, ČCEJKA J, ST CKER M. 27Al and 29Si MAS-NMR study of the MCM-22 zeolite modified by steam and alkaline treatments[C]. Studies in Surface Science and Catalysis, 2008, 174: 937-940.

    21. [21]

      CHEN Lei, DENG Feng, YE Zhao-hui. 27Al MultiPle Quantum MAS NMR study on the ditribution of aluminium in the zeolite MCM-22[J]. Acta Phys-Chim Sin, 2003,19(9):805-809. doi: 10.3866/PKU.WHXB20030905

    22. [22]

      CUNDY C S, COX P A. The hydrothermal synthesis of zeolites:Precursors, intermediates and reaction mechanism[J]. Microporous Mesoporous Mater, 2005,82(1):1-78.  

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Zheng-Biao ZouTai-Zong WuChun-Lan XieYuan WangYan LiGang ZhangRong ChaoLian-Zhong LuoLi-Sheng LiXian-Wen Yangneo-Dicitrinols A–C: Unprecedented PKS-NRPS hybrid citrinin dimers with ferroptosis inhibitory activity from the deep-sea-derived Penicillium citrinum W22. Chinese Chemical Letters, 2024, 35(12): 109723-. doi: 10.1016/j.cclet.2024.109723

    8. [8]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    9. [9]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    10. [10]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    11. [11]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    12. [12]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    13. [13]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    14. [14]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    15. [15]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

Metrics
  • PDF Downloads(7)
  • Abstract views(987)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return