Citation: Li Kunwei, Hao Huanhuan, Liu Jingbing, Wang Hao. Research Progress in Raman Spectroscopy Characterization of Graphene Materials[J]. Chemistry, ;2017, 80(3): 236-240, 245. shu

Research Progress in Raman Spectroscopy Characterization of Graphene Materials

  • Corresponding author: Liu Jingbing, liujingbing@bjut.edu.cn
  • Received Date: 1 July 2016
    Accepted Date: 14 September 2016

Figures(9)

  • Graphene have good application prospect in nano-electronic devices for its unique normalize electronic valence bond structure. Raman spectroscopy, as a sensitive and convenient technology, has been used for characterizing the structures and properties of graphene successfully. This paper mainly introduces the Raman spectra research on graphene with different doping state or deposited on different substrates. Although the G band and 2D band of Raman spectra has deviation in different degree on various substrates, by observing Raman spectroscopies of graphene on indium tin oxide, sapphire, and glass substrate, the conclusion that the intensity of 2D band can determine the layer of graphene is still applicable. Doping can change the charged state of graphene and make graphene show hole type (p) or electronic (n) doped features. The doping type of graphene can be described qualitatively, as well as the carrier concentration of graphene can be quantitatively determined by analyzing the changes of graphene Raman spectroscopy.
  • 加载中
    1. [1]

      K S Novoselov, A K Geim, S V Morozov et al. Science, 2004, 306(5696):666-669. 

    2. [2]

      K S Novoselov, D Jiang, F Schedinet al. PNAS, 2005, 102(30):10451-0453. 

    3. [3]

      J C Meyer, A K Geim, M I Katsnelson et al. Nature, 2007, 446(7131):60-63. 

    4. [4]

      K S Novoselov. Nat. Mater., 2007, 6(3):183-191. 

    5. [5]

      C Lee, X Wei, J W Kysar et al. Science, 2008, 321(5887):385-388. 

    6. [6]

      J S Bunch, S S Verbridge, J S Alden et al. Nano Lett., 2008, 8(8):2458-2462. 

    7. [7]

      Y Zhang, Y W Tan, H L Stormer et al. Nature, 2005, 438(7065):1-7.

    8. [8]

      D Shin, S K Bae, C Yan et al. Carbon Lett., 2012, 13(1):1-16. 

    9. [9]

      X Wang, L Zhi, K Müllen. Nano Lett., 2008, 8(1):323-327. 

    10. [10]

      H Yang, J Heo, S Park et al. Science, 2012, 336(6085):1140-1143. 

    11. [11]

      M D Stoller, S Park, Y Zhu et al. Nano Lett., 2008, 8(10):3498-3502. 

    12. [12]

      V C Tung, L M Chen, M J Allen et al. Nano Lett., 2009, 9(5):1949-1955. 

    13. [13]

      X Yan, X Cui, B Li et al. Nano Lett., 2010, 10(5):1869-1873. 

    14. [14]

      A C Ferrari. Solid State Commun., 2007, 143(1-2):47-57. 

    15. [15]

      A Gupta, G Chen, P Joshi et al. Nano Lett., 2006, 6(12):2667-2673. 

    16. [16]

      C H Lui, Z Li, Z Chen et al. Nano Lett., 2011, 11(1):164-69. 

    17. [17]

      C Cong, T Yu, K Sato et al. ACS Nano, 2011, 5(11):8760-768. 

    18. [18]

      X Zhang, Q Q Li, W P Han et al. Nanoscale, 2014, 6(13):7519-7525. 

    19. [19]

      M Begliarbekov, O Sul, S Kalliakos et al. Appl. Phys. Lett., 2010, 97(3):031908. 

    20. [20]

      A C Ferrari, J C Meyer, V Scardaci et al. Phys. Rev. Lett., 2006, 97(18):13831-13840. 

    21. [21]

      C Thomsen, S Reich. Phys. Rev. Lett., 2001, 85(24):5214-5217.

    22. [22]

      S García, A Marín. Phys. Rev. B, 2007, 76(76):4692-4692.

    23. [23]

      F Tuinstra, J L Koenig. J. Chem. Phys., 1970, 53(3):1126-1130. 

    24. [24]

      A Das, B Chakraborty, A K Sood. Bull. Mater. Sci., 2007, 31(3):579-584. 

    25. [25]

      I Calizo, S Ghosh, W Z Bao et al. Solid State Commun., 2009, 149(27-28):1132-1135. 

    26. [26]

      H Komurasaki, T Tsukamoto, K Yamazaki et al. J. Phys. Chem. C, 2012, 116(18):10084-10089. 

    27. [27]

      I Calizo, S Ghosh, D Teweldebrhan et al. Raman nanometrology of graphene on arbitrary substrates and at variable temperature//Nano Science+Engineering. Internat-ional Society for Optics and Photonics, 2008:70371B.

    28. [28]

      I Calizo, W Z Bao, F Miao et al. Appl. Phys. Lett., 2007, 91(20):201904. 

    29. [29]

      I Calizo, D Teweldebrhan, W Z Bao et al. J. Phys. Conf. Ser., 2008,109:012008. 

    30. [30]

      K S Novoselov, A K Geim, S V Morozov et al. Nature, 2005, 438(7065):197-200. 

    31. [31]

       

    32. [32]

      J Yan, Y Zhang, P Kim et al. Phys. Rev. Lett., 2007, 98(16):166802. 

    33. [33]

      S Pisana, M Lazzeri, C Casiraghi et al. Nat. Mater., 2007, 6(3):198-201. 

    34. [34]

      A Das, S Pisana, B Chakraborty et al. Nat. Nanotech., 2008, 3(4):210-215. 

    35. [35]

      L S Panchakarla, K S Subrahmanyam, S K Saha et al. Adv. Mater., 2009, 21(46):4726-4730.

    36. [36]

      A Das, A K Sood, A Govindaraj et al. Phys. Rev. Lett., 2007, 99(13):136803-136803. 

    37. [37]

      C Zhang, L Fu, N Liu et al. Adv. Mater., 2011, 23(8):1020-1024. 

    38. [38]

      X Li, L Fan, Z Li et al. Adv. Energy Mater., 2012, 2(4):425-429. 

    39. [39]

      L G Cancado, K Takai, T Enoki et al. Appl. Phys. Lett., 2006, 88(16):163106. 

    40. [40]

      R Voggu, B Das, C S Rout et al. J. Phys. Condens. Matter, 2008, 20(47):1005-1008.

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    6. [6]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    7. [7]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    13. [13]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    14. [14]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

Metrics
  • PDF Downloads(184)
  • Abstract views(12944)
  • HTML views(4404)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return