Citation: MAO Qiao-ting, HU Jun-hao, ZHAO Yu-jia, YAN Shu-hang, YANG Hai-ping, CHEN Han-ping. Synergistic effect during biomass and waste plastics co-pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(3): 286-292. shu

Synergistic effect during biomass and waste plastics co-pyrolysis

  • Corresponding author: YANG Hai-ping, yhping2002@163.com
  • Received Date: 17 December 2019
    Revised Date: 1 March 2020

    Fund Project: The project was supported by the National Key Research and Development Program of China 2018YFB1501403the China Postdoctoral Science Foundation 2019M662617The project was supported by the National Key Research and Development Program of China (2018YFB1501403), the National Natural Science Foundation of China (51906082) and the China Postdoctoral Science Foundation (2019M662617)the National Natural Science Foundation of China 51906082

Figures(6)

  • Polypropylene (PP) and bamboo were selected as typical representatives of waste plastics and biomass. And the biomass and plastic co-pyrolysis weight loss, kinetic mechanism and product distribution were studied by thermogravimetric analyzer and fixed-bed reactor. The synergistic mechanism between biomass and plastic during co-pyrolysis was discussed. As the ratio of plastic increases, the ending temperature of co-pyrolysis decreases from 501 to 471℃, while the main temperature range for co-pyrolysis is shortened. What's more, the total activation energy required for the co-pyrolysis decreases when the plastic ratio is below 0.25 and then increases. Comparing the experimental with theoretical data, it is found that the synergistic effect during biomass and waste plastics co-pyrolysis is obvious. Due to the synergistic effect, the total activation energy for co-pyrolysis is much lower than calculated value. In addition, the synergistic effect can promote the conversion of macromolecular volatiles into small-molecule gas, accelerate the generation of hydrocarbons like aromatics and alkanes, and inhibit the formation of oxygen-containing substances like CO2, phenol, carboxylic acids, furans and ketones.
  • 加载中
    1. [1]

      ISAHAK W N R W, HISHAM M W M, YARMO M A, HIN T Y. A review on bio-oil production from biomass by using pyrolysis method[J]. Renewable Sustainable Energy Rev, 2012,16(8):5910-5923. doi: 10.1016/j.rser.2012.05.039

    2. [2]

      AL-SALEM S M, ANTELAVA A, CONSTANTINOU A, MANOS G, DUTTA A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW)[J]. J Environ Manage, 2017,197:177-198. doi: 10.1016/j.jenvman.2017.03.084

    3. [3]

      ZHOU Li-min, WANG Yi-ping, HUANG Qun-wu, CAI Jun-qing. TG analysis and kinetics of biomass/plastic co-pyrolysis[J]. Acta Energ Sol Sin, 2007,28(9):979-983. doi: 10.3321/j.issn:0254-0096.2007.09.008

    4. [4]

      BU Q, CHEN K, XIE W, LIU Y Y, GAO M J, KONG X H, CHU Q L, MAO H P. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene[J]. Bioresour Technol, 2019,291121860. doi: 10.1016/j.biortech.2019.121860

    5. [5]

      HASSAN H, LIM J K, HAMEED B H. Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite[J]. Bioresour Technol, 2019,284:406-414. doi: 10.1016/j.biortech.2019.03.137

    6. [6]

      HASSAN H, HAMEED B H, LIM J K. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene:Synergistic effect and product distributions[J]. Energy, 2020,191116545. doi: 10.1016/j.energy.2019.116545

    7. [7]

      OZSIN G, PUTUN A E. Insights into pyrolysis and co-pyrolysis of biomass and polystyrene:Thermochemical behaviors, kinetics and evolved gas analysis[J]. Energy Convers Manage, 2017,149:675-685. doi: 10.1016/j.enconman.2017.07.059

    8. [8]

      CHEN W, LI K X, XIA M W, YANG H P, CHEN Y Q, CHEN X, CHE Q F, CHEN H P. Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst[J]. Energy, 2018,157:472-482. doi: 10.1016/j.energy.2018.05.149

    9. [9]

      WU Hong-xiang, LI Hai-bin, ZHAO Zeng-li. Thermogravimetric analysis and pyrolytic kinetic study on coal/biomas s blends[J]. J Fuel Chem Technol, 2009,37(5):538-545. doi: 10.3969/j.issn.0253-2409.2009.05.005

    10. [10]

      LI X Y, LI J, ZHOU G Q, FENG Y, WANG Y J, YU G, DENG S B, HUANG J, WANG B. Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites[J]. Appl Catal A:Gen, 2014,481:173-182. doi: 10.1016/j.apcata.2014.05.015

    11. [11]

      JAKAB E, VARHEGYI G, FAIX O. Thermal decomposition of polypropylene in the presence of wood-derived materials[J]. J Anal Appl Pyrolysis, 2000,56(2):273-285. doi: 10.1016/S0165-2370(00)00101-7

    12. [12]

      PENG Jin-xing, SHAO Qian-jun, CHEN Feng-nong, CHEN Fen-xue, YUAN Bo-zeng. Experimental study on co-liquefaction of bamboo and PE in supercritical ethanol[J]. Acta Energ Sol Sin, 2009,30(8):1139-1144. doi: 10.3321/j.issn:0254-0096.2009.08.027

    13. [13]

      BLOCK C, EPHRAIM A, HORTALA W E, MINH D P, VANDECASTEELE C A N. Co-pyrogasification of plastics and biomass, a review[J]. Waste Biomass Valorization, 2019,10(3):483-509. doi: 10.1007/s12649-018-0219-8

    14. [14]

      BURRA K G, GUPTA A K. Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes[J]. Appl Energy, 2018,220:408-418. doi: 10.1016/j.apenergy.2018.03.117

    15. [15]

      XIANG Z P, LIANG J H, HERVAN Z, LIU Y Y, MAO H P, BU Q. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over cobalt modified ZSM-5 catalyst by thermogravimetric analysis[J]. Bioresour Technol, 2018,247:804-811. doi: 10.1016/j.biortech.2017.09.178

    16. [16]

      BURRA K G, GUPTA A K. Synergistic effects in steam gasification of combined biomass and plastic waste mixtures[J]. Appl Energy, 2018,211:230-236. doi: 10.1016/j.apenergy.2017.10.130

  • 加载中
    1. [1]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    2. [2]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    3. [3]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    4. [4]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    5. [5]

      Minglei SunZhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108

    6. [6]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    9. [9]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    10. [10]

      Yi RUTao MENGZhaoteng XUEDongsen MAO . Synergistic catalysis of Al distribution and pore structure in ZSM-5 zeolite for bioethanol-to-propylene. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 247-262. doi: 10.11862/CJIC.20250255

    11. [11]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    12. [12]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    15. [15]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    16. [16]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    17. [17]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    18. [18]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(15)
  • Abstract views(1499)
  • HTML views(322)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return