Citation: Li Kunwei, Liu Yawei, Zhang Jian, You Congya, Tian Tian, Zhang Bo, Liu Danmin, Chen Aibing, Zhang Yongzhe. Thermal Conductivity of Graphene and Its Testing Methods[J]. Chemistry, ;2017, 80(7): 603-610. shu

Thermal Conductivity of Graphene and Its Testing Methods

Figures(10)

  • Graphene has attracted great attention due to its excellent properties which is originated from its unique structure. In this paper, recent works on graphene thermal conduction have been summarized, and it seems that the defect, substrate used and the edge of graphene are the main factors which influence the thermal conduction property of graphene. In addition, the thermal conductivity modes simulated by molecular dynamics and non-equilibrium Green's function have also been included. Based on these theory modes, experimental methodology of the thermal conduction measurement of layered graphene were involved, and the results were provided.
  • 加载中
    1. [1]

      A K Geim, K S Novoselov. Nature, 2007, 6:183~191.

    2. [2]

      K S Novoselov, A K Geim, S V Morozov et al. Science, 2004, 306(5696):666~669.

    3. [3]

      J S Wu, W Pisula, K Mullen et al. Chem. Rev, 2007, 107(3):718~747.

    4. [4]

      A A Balandin. Nat. Mater., 2011, 10, 569~581.

    5. [5]

      J Xi, M Long, L Tang et al. Nanoseale, 2012, 4(15):4348~4369.

    6. [6]

      C Lee, X Wei, J W Kysar et al. Science, 2008, 321(5887):385~388.

    7. [7]

      L Lindsay, D A Broido, N Mingo. Phys. Rev. B, 2010, 82(11):115427.

    8. [8]

      Y L Xing, K Xu, Y H Liu et al. Chem. Eng., 2015, 236(05).

    9. [9]

      L Lindsay, W Li, N Mingo et al. Phys. Rev. B, 2014, 89(15):155426.

    10. [10]

      P Kim, L Shi, A Majumdar et al. Phys. Rev. Lett., 2001, 87:215502.

    11. [11]

      E Pop, D Mann, Q Wang et al. Nano Lett., 2006, 6(1):96~100.

    12. [12]

      A V Vlasov, A V Khomich, A F Popovich. Diam. Relat. Mater., 2005, 14:589~593.

    13. [13]

      H Feng, D Fang, Z P Xu. Appl. Phys. Lett., 2011, 99:041901.

    14. [14]

      E Pop, V Vsrshney, A K Roy. MRS Bull., 2012, 37:1273~1281.

    15. [15]

      W J Evans, L Hu, P Keblinski. Appl. Phys. Lett., 2010, 96(20):203112.

    16. [16]

      P K Schelling, S R Phillpot, P Keblinski. Phys. Rev. B, 2002, 65:144306.

    17. [17]

      J H Seol, A L Moore, L Lindsay et al. Science, 2010, 328(5975):213~216.

    18. [18]

      B Qiu, X L Ruan. Appl. Phys. Lett., 2012, 100(19):193101.

    19. [19]

      J N Hu, X L Ruan, Y P Chen. Nano Lett., 2009, 9(7):2730~2735.

    20. [20]

      H J Zhang, G Lee, A F Fonseca et al. J. Nanomater., 2010, 537657.

    21. [21]

      J W Jiang, B S Wang, J S Wang. Appl. Phys. Lett., 2011, 98(11):113114.

    22. [22]

      Z Huang, T S Fisher, J T Murthy. J. Appl. Phys., 2010, 108(9):094319.

    23. [23]

      A A Balandin, S Ghosh, W Bao et al. Nano Lett., 2008, 8(3):902~907.

    24. [24]

      A C Ferrari, J C Meyer, V C Scardaci et al. Phys. Rev. Lett., 2006, 97:187401.

    25. [25]

      I Calizo, A A Balandin, W Bao et al. Nano Lett., 2007, 7(9):2645~2649.

    26. [26]

      A Gupta, G Chen, P Joshi et al. Nano Lett., 2006, 6:2667~2673.

    27. [27]

      S S Chen, A L Moore, W W Cai et al. ACS Nano, 2011, 5(1):321~328.

    28. [28]

      W W Cai, A L Moore, Y W Zhu et al. Nano Lett., 2010, 10(5):1645~1651.

    29. [29]

      C H Yu, L Shi, Z Yao et al. Nano Lett., 2005, 5:1842~1846.

    30. [30]

      L Shi, D Y Li, C Yu et al. J. Heat Transfer, 2003, 125:881~888.

    31. [31]

      Z Q Wang, R G Xie, C T Bui et al. Nano Lett., 2011, 11:113~118.

    32. [32]

      W Y Jang, Z Chen, W Z Bao et al. Nano Lett., 2010, 10:3909~3913.

    33. [33]

      P G Klemens. J. Wide Band Gap Mater., 2000, 7:332~339.

    34. [34]

      S Lepri, R Livi, A Politi. Phys. Rep., 2003, 377:1~80.

    35. [35]

      A A Balandin. IEEE Spectrum, 2009, 35~39.

    36. [36]

      W Bao, F Miao, C Chen et al. Nat. Nanotechnol., 2009, 4:562~566.

    37. [37]

      S Ghosh, W Z Bao, D L Nika et al. Nat. Mater., 2010, 9:555~558.

    38. [38]

      D L Nika, S Ghosh, E P Pokatilov et al. Appl. Phys. Lett., 2009, 94:203103.

    39. [39]

      C M Chen, Q Zhang, M G Yang et al. Carbon, 2012, 50:3572~3584.

    40. [40]

      S Ghosh, I Calizo, D Teweldebrhan et al. Appl. Phys. Lett., 2008, 92:151911.

    41. [41]

      E Munoz, J X Lu, B I Yakobson. Nano Lett., 2010, 10:1652~1656.

    42. [42]

      W B Choi, I Lahiri, R Seelaboyina et al. Crit. Rev. Solid State, 2010, 35(1):52~71.

    43. [43]

      N J Song, C M Chen, C L Lu et al. J. Mater. Chem. A, 2014, 2:16563~16568.

    44. [44]

    45. [45]

      H C Schniepp, J L Li, M J Mcallister et al. J. Phys. Chem. B, 2006, 110(17):8535~8539.

    46. [46]

      S Stankovich, D A Dikin, G H Dommett et al. Nature, 2006, 442:282~286.

    47. [47]

      S Park, K S Lee, G Bozoklu et al. ACS Nano, 2008, 2:572~578.

    48. [48]

      J Haskins, A Kinaci, C Sevik et al. ACS Nano, 2011, 5:3779~3787.

    49. [49]

      M Freitag, M Steiner, Y Martin et al. Nano Lett., 2009, 9(5):1883~1888.

    50. [50]

      K M F Shahil, A A Balandin. Solid State Commun., 2012, 152:1331~1340.

    51. [51]

      Z Y Wei, Z H Ni, K Bi et al. Phys. Lett. A, 2011, 375:1195~1199.

    52. [52]

      Q Q Kong, Z Liu, J G Gao et al. Adv. Funct. Mater., 2014, 24:4222~4228.

    53. [53]

      P Goli, H Ning, X S Li et al. Nano Lett., 2014, 14:1497~1503.

    54. [54]

    55. [55]

      A K Geim. Science, 2009, 324(5934):1530~1534.

  • 加载中
    1. [1]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    2. [2]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    5. [5]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    6. [6]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    7. [7]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    8. [8]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 100025-0. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    17. [17]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    20. [20]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

Metrics
  • PDF Downloads(111)
  • Abstract views(7310)
  • HTML views(2584)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return