Citation: Chen Zhichao, Zhang Hong, Zhou Shufeng, Cui Xiuling. K2S2O8-Initiated Cascade Cyclization of 2-Alkynylnitriles with Sodium Sulfinates: Access to Fused Cyclopenta[gh]phenanthridines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3866-3872. doi: 10.6023/cjoc202007005 shu

K2S2O8-Initiated Cascade Cyclization of 2-Alkynylnitriles with Sodium Sulfinates: Access to Fused Cyclopenta[gh]phenanthridines

  • Corresponding author: Zhou Shufeng, szhou@hqu.edu.cn Cui Xiuling, cuixl@hqu.edu.cn
  • Received Date: 1 July 2020
    Revised Date: 30 July 2020
    Available Online: 11 August 2020

    Fund Project: the Programme of Introducing Talents of Discipline to Universities 111计划,No.BC2018061the National Natural Science Foundation of China 21572072Project supported by the National Natural Science Foundation of China (No. 21572072) and the Programme of Introducing Talents of Discipline to Universities (111 Project, No. BC 2018061)

Figures(2)

  • A convenient K2S2O8-initiated radical cascade cyclization for the construction of 4-sulfonated cyclopenta[gh]-phenanthridines from 2-alkynylnitriles and sodium sulfinates has been explored under metal-free conditions. This protocol features mild conditions, good functional group tolerance and broad substrate scope. A variety of potentially bioactive 4-sulfonated cyclopenta[gh]phenanthridines were facilely synthesized via direct annulation.
  • 加载中
    1. [1]

      (a) Günes, H. S.; Gözler, B. Fitoterapia 2001, 72, 875.
      (b) Wang, X.-L.; Liu, B.-R.; Chen, C.-K.; Wang, J.-R.; Lee, S.-S. Fitoterapia 2011, 82, 793.
      (c) Belkis, G.; Alan, J. F.; Maurice, S. J. Nat. Prod. 1990, 53, 675.
      (d) Fajardo, V.; Araya, M.; Cuadra, P.; Oyarzun, A.; Gallardo, A.; Cueto, M.; Joseph-Nathan, P. J. Nat. Prod. 2009, 72, 1355.
      (e) Honda, T.; Shigehisa, H. Org. Lett. 2006, 8, 657.
      (f) Khunnawutmanotham, N.; Sahakitpichan, P.; Chimnoi, N.; Techasakul, S. Eur. J. Org. Chem. 2015, 28, 6324.

    2. [2]

      Párraga, J.; Galán, A.; Sanz, M. J.; Cabedo, N.; Cortes, D. Eur. J. Med. Chem. 2015, 90, 101.  doi: 10.1016/j.ejmech.2014.11.009

    3. [3]

      (a) Leardini, R.; Nanni, D.; Tundo, A.; Zanardi, G. Tetrahedron Lett. 1998, 39, 2441.
      (b) Chowdhury, S.; Zhao, B.; Snieckus, V. Polycyclic Aromat. Compd. 1995, 5, 27.
      (c) Wu, Y.; Wong, S. M.; Mao, F.; Chan, T. L.; Kwong, F. Y. Org. Lett. 2012, 14, 5306.

    4. [4]

      (a) Sciabola, S.; Carosati, E.; Baroni, M.; Mannhol, R. J. Med. Chem. 2005, 48, 3756.
      (b) Tfelt-Hansen, P.; De Vries, P.; Saxena, P. R. Drugs 2000, 60, 1259.
      (c) Artico, M.; Silvestri, R.; Massa, S.; Loi, A. G.; Corrias, S.; Piras, G.; Colla, P. L. J. Med. Chem. 1996, 39, 522.
      (d) Harrak, Y.; Casula, G.; Basset, J.; Rosell, G.; Plescia, S.; Raffa, D.; Cusimano, M. G.; Pouplana, R.; Pujol, M. D. J. Med. Chem. 2010, 53, 6560.
      (e) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Angew. Chem., Int. Ed. 2014, 53, 10204.

    5. [5]

      (a) Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Org. Lett. 2013, 15, 1270.
      (b) Mi, X.; Kong, Y.; Zhang, J.; Pi, C.; Cui, X. Chin. Chem. Lett. 2019, 30, 2295.
      (c) Zhang, Z.; Yan, J.; Ma, D.; Sun, J. Chin. Chem. Lett. 2019, 30, 1509.
      (d) Peng, S.; Song, Y.-X.; He, J.-Y.; Tang, S.-S.; Tan, J.-X.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2287.
      (e) Yu, H.; Pi, C.; Wang, Y.; Cui, X.; Wu, Y. Chin. J. Org. Chem. 2018, 38, 124(in Chinese).
      (余海洋, 皮超, 王勇, 崔秀灵, 吴养洁, 有机化学, 2018, 38, 124.)
      (f) Shi, Z.-J.; Wang, L.-H.; Cui, X. Chin. J. Org. Chem. 2019, 39, 1596(in Chinese).
      (施兆江, 王连会, 崔秀灵, 有机化学, 2019, 39, 1596.)
      (g) Xie, L.-Y.; Fang, T.-G.; Tan, J.-X.; Zhang, B.; Cao, Z.; Yang, L.-H.; He, W.-M. Green Chem. 2019, 21, 3858.
      (h) Xie, L.-Y.; Peng, S.; Tan, J.-X.; Sun, R.-X.; Yu, X.; Dai, N.-N.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 16976.
      (i) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.
      (j) Cao, Z.; Zhu, Q.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2132.

    6. [6]

      (a) Shaabani, A.; Mirzaei, P.; Naderi, S.; Lee, D. G. Tetrahedron 2004, 60, 11415.
      (b) Kozak, J. A.; Dake, G. R. Angew. Chem., Int. Ed. 2008, 47, 4221.
      (c) Pritzius, A. B.; Breit, B. Angew. Chem., Int. Ed. 2015, 54, 3121.

    7. [7]

      (a) Olah, G. A.; Kobayashi, S.; Nishimura, J. J. Am. Chem. Soc. 1973, 95, 564.
      (b) Répichet, S.; Le Roux, C.; Hernandez, P.; Dubac, J.; Desmurs, J.-R. J. Org. Chem. 1999, 64, 6479.
      (c) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M. Org. Lett. 2002, 4, 4719.
      (d) Baskin, J. M.; Wang, Z. Org. Lett. 2002, 4, 4423.

    8. [8]

      (a) Xu, Y.; Zhao, J.; Tang, X.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2004, 356, 2029.
      (b) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. Angew. Chem., Int. Ed. 2014, 53, 4205.
      (c) Xu, Y.; Tang, X.; Hu, W.; Wu, W.; Jiang, H. Green Chem. 2014, 16, 3720.
      (d) Wu, W.-Q.; Yi, S.; Yu, Y.; Huang, W.; Jiang, H.-F. J. Org. Chem. 2017, 82, 1224.

    9. [9]

      (a) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134.
      (b) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167.
      (c) Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. 2012, 45, 1278.
      (d) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390.
      (e) Wang, Y.; Lu, H.; Xu, P.-F. Acc. Chem. Res. 2015, 48, 1832.
      (f) Xuan, J.; Studer, A. Chem. Soc. Rev. 2017, 46, 4329.
      (g) Zhang, Y.-L.; Sun, K.; Lv, Q.-Y.; Chen, X.-L.; Qu, L.-B.; Yu, B. Chin. Chem. Lett. 2019, 30, 1361.
      (h) Ren, L.-J.; Ran, M.-G.; He, J.-X.; Qian, Y.; Yao, Q.-L. Chin. J. Org. Chem. 2019, 39, 1583(in Chinese).
      (任林静, 冉茂刚, 何佳芯, 钱燕, 姚秋丽, 有机化学, 2019, 39, 1583.)

    10. [10]

      (a) Li, X.; Fang, X.; Zhuang, S.; Liu, P.; Sun, P. Org. Lett. 2017, 19, 3580.
      (b) Yu, Y.; Cai, Z.; Yuan, W.; Liu, P.; Sun, P. J. Org. Chem. 2017, 82, 8148.
      (c) Zhang, C.; Pi, J.; Chen, S.; Liu, P.; Sun, P. Org. Chem. Front. 2018, 5, 793.
      (d) Xu, P.; Zhu, Y.-M.; Wang, F.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2019, 21, 683.
      (e) Zheng, J.; Zhang, Y.; Wang, D.; Cui, S. Org. Lett. 2016, 18, 1768.
      (f) Wu, L.-J.; Yang, Y.; Song, R.-J.; Yu, J.-X.; Li, J.-H.; He, D.-L. Chem. Commun. 2018, 54, 1367.
      (g) Liu, X.; Wu, Z.; Zhang, Z.; Liu, P.; Sun, P. Org. Biomol. Chem. 2018, 16, 414.
      (h) Shang, J.-Q.; Wang, S.-S.; Fu, H.; Li, Y.; Yang, T.; Li, Y.-M. Org. Chem. Front. 2018, 5, 1945.

    11. [11]

      (a) Zhou, B.; Chen, W.; Yang, Y.; Yang, Y.; Deng, G.; Liang, Y. Org. Biomol. Chem. 2018, 16, 7959.
      (b) Xie, L.-Y.; Peng, S.; Liu, F.; Chen, G.-R.; Xia, W.; Yu, X.; He, W.-M. Org. Chem. Front. 2018, 5, 2604.
      (c) Wu, W.-Q.; Yi, S.-J.; Huang, W.; Luo, D.; Jiang, H.-F. Org. Lett. 2017, 19, 2825.
      (d) Wei, W.; Wen, J.-W.; Yang, D.-S.; Du, J.; You, J.-M.; Wang, H. Green Chem. 2014, 16, 2988.
      (e) Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Chem. Commun. 2016, 52, 2846.

    12. [12]

      Zhou, N.-N.; Wu, M.-X.; Zhang, M.; Zhou, X.-Q.; Zhou, W. Org. Biomol. Chem. 2020, 18, 1733.  doi: 10.1039/D0OB00119H

  • 加载中
    1. [1]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    2. [2]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    3. [3]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    4. [4]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    5. [5]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    6. [6]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    7. [7]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    8. [8]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    9. [9]

      Xuan WangPeng SunSiteng YuanLu YueYufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015

    10. [10]

      Yanxue WuXijun XuShanshan ShiFangkun LiShaomin JiJingwei ZhaoJun LiuYanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062

    11. [11]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    12. [12]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

    13. [13]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    14. [14]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    15. [15]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    16. [16]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    17. [17]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    18. [18]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    19. [19]

      Hui WangHaodong JiDandan ZhangXudong YangHanchun ChenChunqian JiangWeiliang SunJun DuanWen Liu . Solar-light-driven photocatalytic degradation and detoxification of ciprofloxacin using sodium niobate nanocubes decorated g-C3N4 with built-in electric field. Chinese Chemical Letters, 2025, 36(5): 110200-. doi: 10.1016/j.cclet.2024.110200

    20. [20]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

Metrics
  • PDF Downloads(3)
  • Abstract views(2962)
  • HTML views(271)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return