Citation: Wang Lin, Yang Lili, Ou Yunfu, Xu Shihai, Lin Qifu, Yang Dingqiao. Platinum-Catalyzed syn-Stereocontrolled Ring-Opening of Oxabicyclic Alkenes with Arylsulfonyl Hydrazides[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4228-4236. doi: 10.6023/cjoc202006074 shu

Platinum-Catalyzed syn-Stereocontrolled Ring-Opening of Oxabicyclic Alkenes with Arylsulfonyl Hydrazides

  • Corresponding author: Xu Shihai, txush@jnu.edu.c Yang Dingqiao, yangdq@scnu.edu.cn
  • 共同第一作者(These authors contributed equally to this work).
  • Received Date: 30 June 2020
    Revised Date: 23 July 2020
    Available Online: 18 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21672084, 21372090) and the Special Fund Project of Department of Natural Resources of Guangdong Province (Guangdong Natural Resources Cooperation) (No. 2020037)the National Natural Science Foundation of China 21672084the Special Fund Project of Department of Natural Resources of Guangdong Province (Guangdong Natural Resources Cooperation) 2020037the National Natural Science Foundation of China 21372090

Figures(3)

  • A platinum-catalyzed syn-stereocontrolled ring-opening reaction of oxabicyclic alkenes with arylsulfonyl hydrazides was developed. This protocol exhibited high efficiency and good functional group tolerance, affording cis-2-aryl-1, 2-dihydronaphthalen-1-ols (3) or 2-aryl-naphthalenes (4) as dehydrated products in good to excellent yields under mild conditions (up to 89%). In addition, the cis-1, 2-configuration of product (1S*, 2R*)-6, 7-dibromo-2-(p-tolyl)-1, 2-dihydronaphthalen-1-ol (3db) was confirmed by X-ray single crystal diffraction analysis. Based on the results, a plausible mechanism for the ring-opening reaction was proposed. Remarkably, arylsulfonyl hydrazides were used as carboanion nucleophiles in the ring-opening reaction via releasing N2 and SO2 in situ.
  • 加载中
    1. [1]

      (a) Ward, R. S. Chem. Soc. Rev. 1990, 19, 1.
      (b) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169.
      (c) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829.
      (d) Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36, 48.

    2. [2]

      (a) Lautens, M.; Fagnou, K.; Zunic, V. Org. Lett. 2002, 4, 3465.
      (b) McManus, H. A.; Fleming, M. J.; Lautens, M. Angew. Chem., Int. Ed. 2007, 46, 433.
      (c) Tsoung, J.; Krämer, K.; Zajdlik, A.; Liébert, C.; Lautens, M. J. Org. Chem. 2011, 76, 9031.

    3. [3]

      (a) Yang, D.-Q.; Long, Y.-H.; Wang, H.; Zhang, Z.-M. Org. Lett. 2008, 10, 4723.
      (b) Long, Y.-H.; Li, X.-L.; Pan, X.-J.; Ding, D.-D.; Xu, X.; Zuo, X.-J.; Yang, D.-Q.; Wang, S.-Y.; Li, C.-R. Catal. Lett. 2014, 144, 419.
      (c) Yang, W.; Luo, R.-S.; Yang, D.-Q. Molecules 2015, 20, 21103.
      (d) Zhu, M.-N.; Chen, J.-C.; He, X.-B.; Gu, C.-P.; Xu, J.-B.; Fan, B.-M. J. Org. Chem. 2017, 82, 3167.
      (e) Yang, X.; Yang, W.; Yao, Y.-Q.; Deng, Y.-Y.; Zuo, X.-J.; Yang, D.-Q. J. Org. Chem. 2018, 83, 10097.
      (f) Yang, X.; Yang, W.; Yao, Y.-Q.; Deng, Y.-Y.; Yang, D.-Q. Org. Chem. Front. 2019, 6, 1151.

    4. [4]

      (a) Rayabarapu, D. K.; Chiou, C.-F.; Cheng, C.-H. Org. Lett. 2002, 4, 1679.
      (b) Li, L.-P. Rayabarapu, D. K.; Nandi, M.; Cheng, C.-H. Org. Lett. 2003, 5, 1621.
      (c) Mannathana, S.; Cheng, C.-H. Adv. Synth. Catal. 2014, 356, 2239.
      (d) Shukla, P.; Sharma, A.; Pallavi, B.; Cheng, C.-H. Tetrahedron 2015, 71, 2260.

    5. [5]

      (a) Cabrera, S.; Arrayás, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2004, 43, 3944.
      (b) Zhang, T.-K.; Mo, D.-L.; Dai, L.-X.; Hou, X.-L. Org. Lett. 2008, 10, 3689.
      (c) Liu, S.-S.; Li, S.-F.; Chen, H.-L.; Yang, Q.-J.; Xu, J.-B.; Zhou, Y.-Y.; Yuan, M.-L.; Zeng, W.-M.; Fan, B.-M. Adv. Synth. Catal. 2014, 356, 2960.
      (d) Li, S.-F.; Xu, J.-B.; Fan, B.-M.; Lu, Z.-W.; Zeng, C.-Y.; Bian, Z.-X.; Zhou, Y.-Y.; Wang, J. Chem.-Eur. J. 2015, 21, 9003.
      (e) Lu, Z.-W.; Wang, J.; Han, B.-Q.; Li, S.-F.; Zhou, Y.-Y.; Fan, B.-M. Adv. Synth. Catal. 2015, 357, 3121.
      (f) Zhou, H.; Li, J.-X.; Yang, H.-M.; Xia, C.-G.; Jiang, G.-X. Org. Lett. 2015, 17, 4628.
      (g) Yang, F.; Chen, J.-C.; Xu, J.-B.; Ma, F.-J.; Zhou, Y.-Y.; Shinde, M. V.; Fan, B.-M. Org. Lett. 2016, 18, 4832.

    6. [6]

      (a) Bertozzi, F.; Pineschi, M.; Macchia, F.; Arnold, L. A.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2002, 4, 2703.
      (b) Arrayas, R. G.; Cabrera, S.; Carretero, J. C. Org. Lett. 2005, 7, 219.
      (c) Zhang, W.; Wang, L.-X.; Shi, W.-J.; Zhou, Q.-L. J. Org. Chem. 2005, 70, 3734.
      (d) Zhang, W.; Zhu, S.-F.; Qiao, X.-C.; Zhou, Q.-L. Chem.-Asian J. 2008, 3, 2105.
      (e) Millet, R.; Bernardez, T.; Palais, L.; Alexakis, A. Tetrahedron Lett. 2009, 50, 3474.
      (f) Millet, R.; Gremaud, L.; Bernardez, T.; Palais, L.; Alexakis, A. Synthesis 2009, 12, 2101.
      (g) Bos, P. H.; Rudolph, A.; Pérez, M.; Fañanás-Mastral, M.; Harutyunyan, S. R.; Feringa, B. L. Chem. Commun. 2012, 48, 1748.

    7. [7]

      (a) Leong, P.; Lautens, M. J. Org. Chem. 2004, 69, 2194.
      (b) Cho, Y.-H.; Zunic, V.; Senboku, H.; Olsen, M.; Lautens, M. J. Am. Chem. Soc. 2006, 128, 6837.
      (c) Nishimura, T.; Tsurumaki, E.; Kawamoto, T.; Guo, X.-X.; Hayashi, T. Org. Lett. 2008, 10, 4057.
      (d) Tsui, G. C.; Lautens, M. Angew. Chem., Int. Ed. 2012, 51, 5400.
      (e) Zhu, J.-T.; Tsui, G. C.; Lautens, M. Angew. Chem., Int. Ed. 2012, 51, 12353.
      (f) Tsui, G. C.; Ninnemann, N. M.; Hosotani, A.; Lautens, M. Org. Lett. 2013, 5, 1064.
      (g) Zhang, L.; Le, C. M.; Lautens, M. Angew. Chem., Int. Ed. 2014, 53, 5951.
      (h) Chen, J.-C.; Zou, L.-L.; Zeng, C.-Y.; Zhou, Y.-Y.; Fan, B.-M. Org. Lett. 2018, 20, 1283.

    8. [8]

      (a) Meng, L.; Yang, W.; Pan, X.-J.; Tao, M.; Cheng, G.; Wang, S.-Y.; Zeng, H.-P.; Long, Y.-H.; Yang, D.-Q. J. Org. Chem. 2015, 80, 2503.
      (b) Pan, X.-J.; Huang, G.-B.; Long, Y.-H.; Zuo, X.-J.; Xu, X.; Gu, F.-L.; Yang, D.-Q. J. Org. Chem. 2014, 79, 187.

    9. [9]

      (a) Villeneuve, K.; Tam, W. J. Am. Chem. Soc. 2006, 128, 3514.
      (b) Tenaglia, A.; Marc, S.; Giordano, L.; De Riggi, I. Angew. Chem., Int. Ed. 2011, 50, 9062.

    10. [10]

      Ito, S.; Itoh, T.; Nakamura, M. Angew. Chem., Int. Ed. 2011, 50, 454.  doi: 10.1002/anie.201006180

    11. [11]

      (a) Sawama, Y.; Kawamoto, K.; Satake, H.; Krause, N.; Kita, Y. Synlett 2010, 2151.
      (b) Huang, Y.; Ma, C.; Lee, Y. X.; Huang, R.-Z.; Zhao, Y. Angew. Chem., Int. Ed. 2015, 54, 13696.

    12. [12]

      (a) Zeng, C.-Y.; Yang, F.; Chen, J.-C.; Wang, J.; Fan, B.-M. Org. Biomol. Chem. 2015, 13, 8425.
      (b) Xu, X.; Chen, J.-C.; He, Z.-X.; Zhou, Y.-Y.; Fan, B.-M. Org. Biomol. Chem. 2016, 14, 2480.
      (c) Yang, W.; Cheng, G.; Li, Y.; Zuo, X.-J.; Yang, D.-Q. Synthesis 2017, 49, 2025.
      (d) Shen, G.-L.; Khan, R.; Lv, H.-P.; Yang, Y.; Zhang, X.; Zhan, Y.; Zhou, Y.-Y.; Fan, B.-M. Org. Chem. Front. 2019, 6, 1423.

    13. [13]

      (a) Cheng, H.-C.; Yang, D.-Q. J. Org. Chem. 2012, 77, 9756.
      (b) Fang, S.; Liang, X.-L.; Long, Y.-H.; Li, X.-L.; Yang, D.-Q.; Wang, S.-Y.; Li, C.-R. Organometallics 2012, 31, 3113.

    14. [14]

      Yang, D.-Q.; Xia, J.-Y.; Long, Y.-H.; Zeng, Z.-Y.; Zuo, X.-J.; Wang, S.-Y.; Li, C.-R. Org. Biomol. Chem. 2013, 11, 4871.  doi: 10.1039/c3ob40891d

    15. [15]

      (a) Yang, D.-Q.; Liang, N. Org. Biomol. Chem. 2014, 12, 2080.
      (b) Chen, G.; Yang, W.; Li, Y.; Yang, D.-Q. J. Org. Chem. 2016, 81, 7817.

    16. [16]

      Deng, Y.-Y.; Yang, W.; Yao, Y.-Q.; Yang, X.; Zuo, X.-J.; Yang, D.-Q. Org. Biomol. Chem. 2019, 17, 703.  doi: 10.1039/C8OB02864H

    17. [17]

      (a) Li, Y.; Yang, W.; Cheng, G.; Yang, D.-Q. J. Org. Chem. 2016, 81, 4744.
      (b) Wu, R.-H.; Yang, W.; Chen, W.-K.; Yang, D.-Q. Org. Chem. Front. 2017, 4, 1921.

    18. [18]

      (a) Zeng, Z.-Y.; Yang, D.-Q.; Long, Y.-H.; Pan, X.-J.; Huang, G.-B.; Zuo, X.-J.; Zhou, W. J. Org. Chem. 2014, 79, 5249.
      (b) Zhang, W.; Chen, J.-C.; Zeng, G.-Z.; Yang, F.; Xu, J.-B.; Sun, W.-Q.; Shinde, M. V.; Fan, B.-M. J. Org. Chem. 2017, 82, 2641.

    19. [19]

      Myers, A. G.; Zheng, B.; Movassaghi, M. J. Org. Chem. 1997, 62, 7507.  doi: 10.1021/jo9710137

    20. [20]

      Aziz, J.; Messaoudi, S.; Alami, M.; Hamze, A. Org. Biomol. Chem. 2014, 12, 9743.  doi: 10.1039/C4OB01727G

    21. [21]

      Chen, D.-H.; Yao, Y.-Q.; Yang, W.; Lin, Q.-F.; Li, H.-Y.; Wang, L.; Chen, S.-Q.; Tan, Y.; Yang, D.-Q. J. Org. Chem. 2019, 84, 12481.  doi: 10.1021/acs.joc.9b01957

  • 加载中
    1. [1]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    2. [2]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    3. [3]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    4. [4]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    5. [5]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    6. [6]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    7. [7]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    8. [8]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    9. [9]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    10. [10]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    11. [11]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    12. [12]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    13. [13]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    14. [14]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    15. [15]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    16. [16]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    17. [17]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    18. [18]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    19. [19]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    20. [20]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

Metrics
  • PDF Downloads(57)
  • Abstract views(2703)
  • HTML views(395)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return