Citation: Sheng Jie, Wu Na, Liu Xu, Liu Feng, Liu Shuai, Ding Weijie, Liu Chang, Cheng Xu. Electrochemical Allylic Hydrodefluorination Reaction Using Gaseous Ammonia as Hydrogen Source[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3873-3880. doi: 10.6023/cjoc202006071 shu

Electrochemical Allylic Hydrodefluorination Reaction Using Gaseous Ammonia as Hydrogen Source

  • Corresponding author: Cheng Xu, chengxu@nju.edu.cn
  • Received Date: 29 June 2020
    Revised Date: 23 July 2020
    Available Online: 5 August 2020

    Fund Project: the National Natural Science Foundation of China 22031008Project supported by the National Natural Science Foundation of China (Nos.22071105, 22031008), the QingLan Project of Jiangsu Education Department and the National Key Research and Development Program of China (No.2019YFC0408303)the QingLan Project of Jiangsu Education Department and the National Key Research and Development Program of China 2019YFC0408303the National Natural Science Foundation of China 22071105

Figures(3)

  • gem-Difluoroalkenes have wide applications in the drug designs and act as the synthon of molecules containing fluoride. The current researches on the electrochemical syntheses of gem-difluoroalkenes are limited to the silylation of enolated trifluoromethyl ketones. Herein, by using graphite felt as electrodes, the electrochemical allylic hydrodefluorination of α-trifluoromethyl cinnamates is realized using gaseous ammonia as hydrogen source, giving gem-difluorostyrenes in moderate to good yields. The usage of ammonia and graphite felt cathode is important to inhibit the cathodic hydrogen evolution, keeping the electron transfer from cathode to substrate with high selectivity. The cyclic voltammetry (CV) and square wave voltammetry (SWV) analyses support a stepwise electron transfer process to achieve the C—H bond formation and C—F bond cleavage.
  • 加载中
    1. [1]

      (a) McDonald, I. A.; Lacoste, J. M.; Bey, P.; Palfreyman, M. G.; Zreika, M. J. Med. Chem. 1985, 28, 186.
      (b) Sayre, L. M. WO2007005737A2. 2007.

    2. [2]

      Okada, H.; Morita, M.; Ueda, T.; Takeo, H.; Kominami, H.; Kiriyama, K.; Nakamoto, K.; Yoshida, Y. WO2004052872A1, 2004.

    3. [3]

      Koley, S.; Altman, R. A. Isr. J. Chem. 2020, 60, 313.

    4. [4]

      (a) Gao, B.; Zhao, Y.; Ni, C.; Hu, J. Org. Lett. 2014, 16, 102.
      (b) Gao, B.; Zhao, Y.; Hu, J. Angew. Chem., Int. Ed. 2015, 54, 638.

    5. [5]

      (a) Tian, P.; Feng, C.; Loh, T.-P. Nat. Commun. 2015, 6, 7472.
      (b) Tian, P.; Wang, C.-Q.; Cai, S.-H.; Song, S.; Ye, L.; Feng, C.; Loh, T.-P. J. Am. Chem. Soc. 2016, 138, 15869.
      (c) Cai, S.-H.; Ye, L.; Wang, D.-X.; Wang, Y.-Q.; Lai, L.-J.; Zhu, C.; Feng, C.; Loh, T.-P. Chem. Commun. 2017, 53, 8731.
      (d) Tang, H.-J.; Lin, L.-Z.; Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2017, 56, 9872.
      (e) Zhu, C.; Song, S.; Zhou, L.; Wang, D.-X.; Feng, C.; Loh, T.-P. Chem. Commun. 2017, 53, 9482.
      (f) Tang, H.-J.; Zhang, Y.-F.; Jiang, Y.-W.; Feng, C. Org. Lett. 2018, 20, 5190.
      (g) Zhou, L.; Zhu, C.; Loh, T.-P.; Feng, C. Chem. Commun. 2018, 54, 5618.
      (h) Liu, H.; Ge, L.; Wang, D.-X.; Chen, N.; Feng, C. Angew. Chem., Int. Ed. 2019, 58, 3918.
      (i) Zhou, L.; Zhu, C.; Bi, P.; Feng, C. Chem. Sci. 2019, 10, 1144.
      (j) Zhu, C.; Zhang, Y.-F.; Liu, Z.-Y.; Zhou, L.; Liu, H.; Feng, C. Chem. Sci. 2019, 10, 6721.
      (k) Cao, Z.-C.; Liu, J.-C.; Chu, Y.-Q.; Zhao, F.-M.; Zhu, Y.-H.; She, Y.-B. Chin. J. Org. Chem. 2019, 39, 2499(in Chinese).
      (曹志成, 刘建超, 褚有群, 赵峰鸣, 朱英红, 佘远斌, 有机化学2019, 39, 2499.)
      (l) Du, H.-W.; Sun, J.; Gao, Q.-S.; Wang, J.-Y.; Wang, H.; Xu, Z.; Zhou, M.-D. Org. Lett. 2020, 22, 1542.

    6. [6]

      Zubkov, M. O.; Kosobokov, M. D.; Levin, V. V.; Kokorekin, V. A.; Korlyukov, A. A.; Hu, J.; Dilman, A. D. Chem. Sci. 2020, 11, 737.
       

    7. [7]

      Liu, C.; Zhu, C.; Cai, Y.; Yang, Z.; Zeng, H.; Chen, F.; Jiang, H. Chem.-Eur. J. 2020, 26, 1953.

    8. [8]

      Chelucci, G. Chem. Rev. 2012, 112, 1344.
       

    9. [9]

      Nihei, T.; Iwai, N.; Matsuda, T.; Kitazume, T. J. Org. Chem. 2005, 70, 5912.
       

    10. [10]

      Cao, C.-R.; Ou, S.; Jiang, M.; Liu, J.-T. Tetrahedron Lett. 2017, 58, 482.
       

    11. [11]

      Wang, S.; Cheng, B.-Y.; Sršen, M.; König, B. J. Am. Chem. Soc. 2020, 142, 7524.

    12. [12]

      Yu, J.; Lin, J.-H.; Xiao, J.-C. Chin. J. Org. Chem. 2019, 39, 265(in Chinese).
       

    13. [13]

      Guo, S.; Yang, P.; Zhou, J. Chem. Commun. 2015, 51, 12115.

    14. [14]

      (a) Chen, J.; Lv, S.; Tian, S. ChemSusChem 2019, 12, 115.
      (b) Gandeepan, P.; Kaplaneris, N.; Santoro, S.; Vaccaro, L.; Ackermann, L. ACS Sustainable Chem. Eng. 2019, 7, 8023.
      (c) Mei, H.; Yin, Z.; Liu, J.; Sun, H.; Han, J. Chin. J. Chem. 2019, 37, 292.
      (d) Meyer, T. H.; Finger, L. H.; Gandeepan, P.; Ackermann, L. Trends Chem. 2019, 1, 63.
      (e) Qiu, Y.; Struwe, J.; Ackermann, L. Synlett 2019, 30, 1164.
      (f) Song, C.; Liu, K.; Dong, X.; Chiang, C.-W.; Lei, A. Synlett 2019, 30, 1149.
      (g) Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.; Lei, A. Chem. Rev. 2019, 119, 6769.
      (h) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
      (i) Ye, Z.; Zhang, F. Chin. J. Chem. 2019, 37, 513.
      (j) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
      (k) Zhang, H.-Y.; Tang, R.-P.; Shi, X.-L.; Jie, L.; Wu, J.-W. Chin. J. Org. Chem. 2019, 39, 1837(in Chinese).
      (张怀远, 唐蓉萍, 石星丽, 颉林, 伍家卫, 有机化学, 2019, 39, 1837.)
      (l) Ackermann, L. Acc. Chem. Res. 2020, 53, 84.
      (m) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
      (n) Li, M.; Hong, J.; Xiao, W.; Yang, Y.; Qiu, D.; Mo, F. ChemSusChem 2020, 13, 1661.
      (o) Rockl, J. L.; Pollok, D.; Franke, R.; Waldvogel, S. R. Acc. Chem. Res. 2020, 53, 45.
      (p) Wang, P.; Gao, X. L.; Huang, P. F.; Lei, A. W. ChemCatChem 2020, 12, 27.
      (q) Wang, X.-Y.; Xu, X.-T.; Wang, Z.-H.; Fang, P.; Mei. T.-S. Chin. J. Org. Chem. 2020, 40, 3738(in Chinese).
      (王向阳, 徐学涛, 王振华, 方萍, 梅天胜, 有机化学, 2020, 40, 3738.)

    15. [15]

      Peters, D. G.; McGuire, C. M.; Pasciak, E. M.; Peverly, A. A.; Strawsine, L. M.; Wagoner, E. R.; Barnes, J. T. Rev. Soc. Quim. Mex. 2017, 58, 287.

    16. [16]

      Huang, H.; Lambert, T. H. Angew. Chem., Int. Ed. 2020, 59, 658.

    17. [17]

      (a) Uneyama, K.; Kato, T. Tetrahedron Lett. 1998, 39, 587.
      (b) Uneyama, K.; Maeda, K.; Kato, T.; Katagiri, T. Tetrahedron Lett. 1998, 39, 3741.
      (c) Uneyama, K.; Mizutani, G. Chem. Commun. 1999, 613.
      (d) Uneyama, K.; Mizutani, G.; Maeda, K.; Kato, T. J. Org. Chem. 1999, 64, 6717.

    18. [18]

      (a) Liu, X.; Liu, R.; Qiu, J.; Cheng, X.; Li, G. Angew. Chem., Int. Ed., 2020, 59, 13962.
      (b) Li, J.; He, L.; Liu, X.; Cheng, X.; Li, G. Angew. Chem., Int. Ed. 2019, 58, 1759.

  • 加载中
    1. [1]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    2. [2]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    3. [3]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    6. [6]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    7. [7]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    8. [8]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    9. [9]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    10. [10]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    11. [11]

      Chunqing OuMeijia XiaoXinyue ZhengXianzhou HuangSuleixin YangYingying LengXiaowei LiuXiuqi LiangLinjiang SongYanjie YouShaohua YaoChangyang Gong . Programmable double-unlock nanocomplex self-supplies phenylalanine ammonia-lyase for precise phenylalanine deprivation of tumors. Chinese Chemical Letters, 2024, 35(8): 109275-. doi: 10.1016/j.cclet.2023.109275

    12. [12]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    13. [13]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    14. [14]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    15. [15]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    16. [16]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    17. [17]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    18. [18]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    19. [19]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    20. [20]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

Metrics
  • PDF Downloads(15)
  • Abstract views(2524)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return