Advances in Mechanoluminescence and Its Applications
- Corresponding author: Li Qianqian, qianqian-alinda@163.com Li Zhen, lizhen@whu.edu.cn
Citation: Chang Kai, Li Qianqian, Li Zhen. Advances in Mechanoluminescence and Its Applications[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3656-3671. doi: 10.6023/cjoc202006052
(a) Bacon, F. The Advancement of Learning, Press of P. F Collier & Son, New York, 1901, pp. 208~209.
(b) Feng, A.; Smet, A. P. F. Materials 2018, 11, 484.
Xie, Y.; Li, Z. Chem 2018, 4, 943.
doi: 10.1016/j.chempr.2018.01.001
Sakai, K.; Koga, T.; Imai, Y.; Maehara, S.; Xu, C. N. Phys. Chem. Chem. Phys. 2006, 8, 2819.
doi: 10.1039/b604656h
Lavrov, A. Strain 2005, 41, 135.
doi: 10.1111/j.1475-1305.2005.00233.x
Zhang, J.-C.; Wang, X.; Marriott, G.; Xu, C.-N. Prog. Mater. Sci. 2019, 103, 678.
doi: 10.1016/j.pmatsci.2019.02.001
Chandra, B. P.; Rathore, A. S. Cryst. Res. Technol. 1995, 30, 885.
doi: 10.1002/crat.2170300702
Bünzli, J.-C. G.; Wong, K.-L. J. Rare Earths 2018, 36, 1.
doi: 10.1016/j.jre.2017.09.005
Zhang, H.; Wei, Y.; Huang, X.; Huang, W. J. Lumin. 2019, 207, 137.
doi: 10.1016/j.jlumin.2018.10.117
Chandra, B. P.; Chandra, V. K.; Jha, P.; Patel, R.; Shende, S. K.; Thaker, S.; Baghel, R. N. J. Lumin. 2012, 132, 2012.
doi: 10.1016/j.jlumin.2012.03.001
Chandra, B. P.; Chandra, V. K.; Jha, P. J. Lumin. 2013, 135, 139.
doi: 10.1016/j.jlumin.2012.10.009
Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.
Dang, Q.; Hu, L.; Wang, J.; Zhang, Q.; Han, M.; Luo, S.; Gong, Y.; Wang, C.; Li, Q.; Li, Z. Chem.-Eur. J. 2019, 25, 7031.
doi: 10.1002/chem.201901116
Liu, F.; Tu, Z.; Fan, Y.; Li, Q.; Li, Z. ACS Omega 2019, 4, 18609.
doi: 10.1021/acsomega.9b02416
Li, W.; Huang, Q.; Mao, Z.; Li, Q.; Jiang, L.; Xie, Z.; Xu, R.; Yang, Z.; Zhao, J.; Yu, T.; Zhang, Y.; Aldred, M. P.; Chi, Z. Angew. Chem., Int. Ed. 2018, 57, 12727.
doi: 10.1002/anie.201806861
Wang, J.; Chai, Z.; Wang, J.; Wang, C.; Han, M.; Liao, Q.; Huang, A.; Lin, P.; Li, C.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2019, 58, 17297.
doi: 10.1002/anie.201911648
Yan, C.; Yang, F.; Wu, M.; Yuan, Y.; Chen, F.; Chen, Y. Macromolecules 2019, 52, 9376.
doi: 10.1021/acs.macromol.9b02089
Yuan, Y.; Yuan, W.; Chen, Y. Sci. China Mater. 2016, 59, 507.
doi: 10.1007/s40843-016-5060-7
Chakravarty, A.; Phillipson, T. E. J. Phys. D: Appl. Phys. 2004, 37, 2175.
doi: 10.1088/0022-3727/37/15/020
Xie, Y.; Li, Z. Mater. Chem. Front. 2020, 4, 317.
doi: 10.1039/C9QM00580C
Li, Q.; Li, Z. Acc. Chem. Res. 2020, 53, 962.
doi: 10.1021/acs.accounts.0c00060
Chandra, B. P.; Chandra, V. K.; Jha, P. Phys. B 2015, 463, 62.
doi: 10.1016/j.physb.2015.01.030
Zhang, J.-C.; Long, Y.-Z.; Yan, X.; Wang, X.; Wang, F. Chem. Mater. 2016, 28, 4052.
doi: 10.1021/acs.chemmater.6b01550
Wang, X.; Xu, C. N.; Yamada, H.; Nishikubo, K.; Zheng, X. G. Adv Mater. 2005, 17, 1254.
doi: 10.1002/adma.200401406
Chandra, B. P.; Bagri, A. K.; Chandra, V. K. J. Lumin. 2010, 130, 309.
doi: 10.1016/j.jlumin.2009.09.008
Li, Q.; Tang, Y.; Hu, W.; Li, Z. Small 2018, 14, 1801560.
doi: 10.1002/smll.201801560
Li, Q. Q.; Li, Z. Sci. China Mater. 2020, 63, 177.
doi: 10.1007/s40843-019-1172-2
Wang, Y.; Yang, J.; Tian, Y.; Fang, M.; Liao, Q.; Wang, L.; Hu, W.; Tang, B. Z.; Li, Z. Chem. Sci. 2020, 11, 833.
doi: 10.1039/C9SC04632A
Tian, Y.; Gong, Y.; Liao, Q.; Wang, Y.; Ren, J.; Fang, M.; Yang, J.; Li, Z. Cell Rep. Phys. Sci. 2020, 1, 100052.
doi: 10.1016/j.xcrp.2020.100052
Liu, F.; Wu, F.; Ling, W.; Tu, Z.; Zhang, J.; Wei, Z.; Zhu, L.; Li, Q.; Li, Z. ACS Energy Lett. 2019, 4, 2514.
doi: 10.1021/acsenergylett.9b01539
Tu, J.; Liu, C.; Fan, Y.; Liu, F.; Chang, K.; Xu, Z.; Li, Q.; Chen, Y.; Li, Z. J. Mater. Chem. A 2019, 7, 15662.
doi: 10.1039/C9TA02488C
Xie, Y.; Gong, Y.; Han, M.; Zhang, F.; Peng, Q.; Xie, G.; Li, Z. Macromolecules 2019, 52, 896.
doi: 10.1021/acs.macromol.8b02051
Li, Y.; Han, M.; Yang, W.; Guo, J.; Chang, K.; Wang, J.; Min, J.; Li, Q.; Li, Z. Mater. Chem. Front. 2019, 3, 1840.
doi: 10.1039/C9QM00236G
Zink, J. I.; Hardy, G. E.; Sutton, J. E. J. Phys. Chem. 1976, 80, 248.
doi: 10.1021/j100544a007
Tu, J.; Fan, Y.; Wang, J.; Li, X.; Liu, F.; Han, M.; Wang, C.; Li, Q.; Li, Z. J. Mater. Chem. C 2019, 7, 12256.
doi: 10.1039/C9TC03515J
Fang, M.; Yang, J.; Liao, Q.; Gong, Y.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2017, 5, 9879.
doi: 10.1039/C7TC03641H
Xie, Y.; Tu, J.; Zhang, T.; Wang, J.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Z. Chem. Commun. 2017, 53, 11330.
doi: 10.1039/C7CC04663D
Liu, F.; Tu, J.; Wang, X.; Wang, J.; Gong, Y.; Han, M.; Dang, X.; Liao, Q.; Peng, Q.; Li, Q.; Li, Z. Chem. Commun. 2018, 54, 5598.
doi: 10.1039/C8CC03083A
Huang, G.; Jiang, Y.; Wang, J.; Li, Z.; Li, B. S.; Tang, B. Z. J. Mater. Chem. C 2019, 7, 12709.
doi: 10.1039/C9TC04501E
Wang, C.; Yu, Y.; Chai, Z.; He, F.; Wu, C.; Gong, Y.; Han, M.; Li, Q.; Li, Z. Mater. Chem. Front. 2019, 3, 32.
doi: 10.1039/C8QM00411K
Gong, Y.; Zhang, P.; Gu, Y.; Wang, J.; Han, M.; Chen, C.; Zhan, X.; Xie, Z.; Zou, B.; Peng, Q.; Chi, Z.; Li, Z. Adv. Opt. Mater. 2018, 6, 1800198.
doi: 10.1002/adom.201800198
Mu, Y.; Yang, Z.; Chen, J.; Yang, Z.; Li, W.; Tan, X.; Mao, Z.; Yu, T.; Zhao, J.; Zheng, S.; Liu, S.; Zhang, Y.; Chi, Z.; Xu, J.; Aldred, M. P. Chem. Sci. 2018, 9, 3782.
doi: 10.1039/C8SC00429C
Li, W.; Huang, Q.; Mao, Z.; Zhao, J.; Wu, H.; Chen, J.; Yang, Z.; Li, Y.; Yang, Z.; Zhang, Y.; Aldred, M. P.; Chi, Z. Angew. Chem., Int. Ed. 2020, 59, 3739.
doi: 10.1002/anie.201915556
Yu, Y.; Wang, C.; Wei, Y.; Fan, Y.; Yang, J.; Wang, J.; Han, M.; Li, Q.; Li, Z. Adv. Optical Mater. 2019, 7. 1900505.
doi: 10.1002/adom.201900505
Tu, J.; Liu, F.; Wang, J.; Li, X.; Gong, Y.; Fan, Y.; Han, M.; Li, Q.; Li, Z. ChemPhotoChem 2019, 3, 133.
doi: 10.1002/cptc.201800227
Yu, Y.; Fan, Y.; Wang, C.; Wei, Y.; Liao, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2019, 7, 13759.
doi: 10.1039/C9TC05218F
Wang, C.; Yu, Y.; Yuan, Y.; Ren, C.; Liao, Q.; Wang, J.; Chai, Z.; Li, Q.; Li, Z. Matter 2020, 2, 181.
doi: 10.1016/j.matt.2019.10.002
Fontenot, R. S.; Hollerman, W. A.; Aggarwal, M. D.; Bhat, K. N.; Goedeke, S. M. Measurement 2012, 45, 431.
doi: 10.1016/j.measurement.2011.10.031
Hollerman, W. A.; Fontenot, R. S.; Bhat, K. N.; Aggarwal, M. D.; Guidry, C. J.; Nguyen, K. M. Opt. Mater. 2012, 34, 1517.
doi: 10.1016/j.optmat.2012.03.011
Zhang, J.-C.; Xu, C.-N.; Wang, X.; Long, Y.-Z. Chem. Mater. 2014, 28, 4052.
Terasaki, N.; Xu, C.-N. J. Colloid Interf. Sci. 2014, 427, 62.
doi: 10.1016/j.jcis.2013.11.070
Zhang, J.-C.; Xu, C.-N.; Kamimura, S.; Terasawa, Y.; Yamada, H.; Wang, X. Opt. Express 2013, 21, 12976.
doi: 10.1364/OE.21.012976
Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 880.
doi: 10.1002/anie.201610453
Chen, Y.; Xu, C.; Xu, B.; Mao, Z.; Li, J.-A.; Yang, Z.; Peethani, N. R.; Liu, C.; Shi, G.; Gu, F. L.; Zhang, Y.; Chi, Z. Mater. Chem. Front. 2019, 3, 1800.
doi: 10.1039/C9QM00312F
Xiong, P.; Peng, M.; Cao, J.; Li, X. J. Am. Ceram. Soc. 2019, 102, 5899.
doi: 10.1111/jace.16444
Xie, Z.; Yu, T.; Chen, J.; Ubba, E.; Wang, L.; Mao, Z.; Su, T.; Zhang, Y.; Aldred, M. P.; Chi, Z. Chem. Sci. 2018, 9, 5787.
doi: 10.1039/C8SC01703D
Sun, Q.; Zhang, K.; Zhang, Z.; Tang, L.; Xie, Z.; Chi, Z.; Xue, S.; Zhang, H.; Yang, W. Chem. Commun. 2018, 54, 8206.
doi: 10.1039/C8CC04358B
Yang, J.; Qin, J.; Geng, P.; Wang, J.; Fang, M.; Li, Z. Angew. Chem., Int. Ed. 2018, 57, 14174.
doi: 10.1002/anie.201809463
Yang, J.; Fang, M.; Li, Z. InfoMat 2020, 2, 791.
doi: 10.1002/inf2.12107
Wang, J.; Wang, C.; Gong, Y.; Liao, Q.; Han, M.; Jiang, T.; Dang, Q.; Li, Y.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2018, 57, 16821.
doi: 10.1002/anie.201811660
Jeong, S. M.; Song, S.; Lee, S. K.; Ha, N. Y. Adv. Mater. 2013, 25, 6194.
doi: 10.1002/adma.201301679
Peng, D.; Chen, B.; Wang, F. Chempluschem 2015, 80, 1209.
doi: 10.1002/cplu.201500185
Kim, Y.; Kim, J. S.; Kim, G. W. Sci. Rep. 2018, 8, 12023.
doi: 10.1038/s41598-018-30633-0
Kim, Y.; Roy, S.; Jung, G. Y.; Oh, J. S.; Kim, G. W. Sci. Rep. 2019, 9, 15215.
doi: 10.1038/s41598-019-51771-z
Jiang, Y.; Wang, F.; Zhou, H.; Fan, Z.; Wu, C.; Zhang, J.; Liu, B.; Wang, Z. Mater. Sci. Eng. C 2018, 92, 374.
doi: 10.1016/j.msec.2018.06.056
Wu, X.; Zhu, X.; Chong, P.; Liu, J.; Andre, L. N.; Ong, K. S.; Brinson, K., Jr.; Mahdi, A. I.; Li, J.; Fenno, L. E.; Wang, H.; Hong, G. PNAS 2019, 116, 26332.
doi: 10.1073/pnas.1914387116
Yoshida, A.; Liu, L.; Tu, D.; Kainuma, S.; Xu, C.-N. J. Disaster Res. 2017, 12, 506.
doi: 10.20965/jdr.2017.p0506
Terasaki, N. Sens. Mater. 2016, 28, 827.
Xu, H.; Wang, F.; Wang, Z.; Zhou, H.; Zhang, G.; Zhang, J.; Wang, J.; Yang, S. Tribol. Lett. 2019, 67, 13.
doi: 10.1007/s11249-018-1120-0
Terasaki, N.; Xu, C.-N. IEEE Sens. J. 2013, 13, 3999.
doi: 10.1109/JSEN.2013.2264665
Shin, S. W.; Oh, J. P.; Hong, C. W.; Kim, E. M.; Woo, J. J.; Heo, G. S.; Kim, J. H. ACS Appl. Mater. Interfaces 2016, 8, 1098.
doi: 10.1021/acsami.5b07594
Jeong, S. M.; Song, S.; Kim, H.; Joo, K.-I.; Takezoe, H. Adv. Funct. Mater. 2016, 26, 4848.
doi: 10.1002/adfm.201601461
Jeong, S. M.; Song, S.; Kim, H. Nano Energy 2016, 21, 154.
doi: 10.1016/j.nanoen.2016.01.012
Jeong, S. M.; Song, S.; Joo, K.-I.; Kim, J.; Hwang, S.-H.; Jeong, J.; Kim, H. Energy Environ. Sci. 2014, 7, 3338.
doi: 10.1039/C4EE01776E
Wong, M. C.; Chen, L.; Tsang, M. K.; Zhang, Y.; Hao, J. Adv. Mater. 2015, 27, 4488.
doi: 10.1002/adma.201502015
Terasaki, N.; Xu, C.-N.; Imai, Y.; Yamada, H. Jpn. J. Appl. Phys. 2007, 46, 2385.
doi: 10.1143/JJAP.46.2385
Patel, D. K.; Cohen, B.-E.; Etgar, L.; Magdassi, S. Mater. Horiz. 2018, 5, 708.
doi: 10.1039/C8MH00296G
Lynch, J. P.; Pulliam, E.; Hoover, G.; Tiparti, D.; Ryu, D. Development of self-powered strain sensor using mechano-luminescent ZnS: Cu and mechano-optoelectronic P3HT. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, 2017 (DOI: 10.1117/12.2260318).
Kwon, S.; Hwang, Y. H.; Nam, M.; Chae, H.; Lee, H. S.; Jeon, Y.; Lee, S.; Kim, C. Y.; Choi, S.; Jeong, E. G.; Choi, K. C. Adv. Mater. 2020, 32, 1903488.
doi: 10.1002/adma.201903488
Shrivastava, S.; Trung, T. Q.; Lee, N. E. Chem. Soc. Rev. 2020, 49, 1812.
doi: 10.1039/C9CS00319C
Jeong, S. M.; Song, S.; Seo, H.-J.; Choi, W. M.; Hwang, S.-H.; Lee, S. G.; Lim, S. K. Adv. Sustainable Syst. 2017, 1, 1700126.
doi: 10.1002/adsu.201700126
Qian, X.; Cai, Z.; Su, M.; Li, F.; Fang, W.; Li, Y.; Zhou, X.; Li, Q.; Feng, X.; Li, W.; Hu, X.; Wang, X.; Pan, C.; Song, Y. Adv. Mater. 2018, 30, 1800291.
doi: 10.1002/adma.201800291
Park, H. J.; Kim, S.; Lee, J. H.; Kim, H. T.; Seung, W.; Son, Y.; Kim, T. Y.; Khan, U.; Park, N. M.; Kim, S. W. ACS Appl. Mater. Interfaces 2019, 11, 5200.
doi: 10.1021/acsami.8b16023
Zhang, J.; Bao, L.; Lou, H.; Deng, J.; Chen, A.; Hu, Y.; Zhang, Z.; Sun, X.; Peng, H. J. Mater. Chem. C 2017, 5, 8027.
doi: 10.1039/C7TC02428B
Liang, G.; Ruan, Z.; Liu, Z.; Li, H.; Wang, Z.; Tang, Z.; Mo, F.; Yang, Q.; Ma, L.; Wang, D.; Zhi, C. Adv. Electron. Mater. 2019, 5. 1900553.
doi: 10.1002/aelm.201900553
Monette, Z.; Kasar, A. K.; Menezes, P. L. J. Mater. Sci.-Mater. Electron. 2019, 30, 19675.
doi: 10.1007/s10854-019-02369-8
Wang, X.; Que, M.; Chen, M.; Han, X.; Li, X.; Pan, C.; Wang, Z. L. Adv. Mater. 2017, 29, 1605817.
doi: 10.1002/adma.201605817
Wang, X.; Zhang, H.; Yu, R.; Dong, L.; Peng, D.; Zhang, A.; Zhang, Y.; Liu, H.; Pan, C.; Wang, Z. L. Adv. Mater. 2015, 27, 2324.
doi: 10.1002/adma.201405826
Jang, J.; Kim, H.; Ji, S.; Kim, H. J.; Kang, M. S.; Kim, T. S.; Won, J. E.; Lee, J. H.; Cheon, J.; Kang, K.; Im, W. B.; Park, J. U. Nano Lett. 2020, 20, 66.
doi: 10.1021/acs.nanolett.9b02978
Arppe, R.; Sørensen, T. J. Nat. Rev. Chem. 2017, 1, 0031.
doi: 10.1038/s41570-017-0031
Zhang, J. C.; Pan, C.; Zhu, Y. F.; Zhao, L. Z.; He, H. W.; Liu, X.; Qiu, J. Adv. Mater. 2018, 30, 1804644.
doi: 10.1002/adma.201804644
Zuo, Y.; Xu, X.; Tao, X.; Shi, X.; Zhou, X.; Gao, Z.; Sun, X.; Peng, H. J. Mater. Chem. C 2019, 7, 4020.
doi: 10.1039/C9TC00641A
Kenry; Duan, Y.; Liu, B. Adv. Mater. 2018, 30, 1802394.
doi: 10.1002/adma.201802394
Xiong, P.; Peng, M. J. Mater. Chem. C 2019, 7, 6301.
doi: 10.1039/C9TC00242A
Li, L.; Wondraczek, L.; Li, L.; Zhang, Y.; Zhu, Y.; Peng, M.; Mao, C. ACS Appl. Mater. Interfaces 2018, 10, 14509.
doi: 10.1021/acsami.8b02530
Gong, Y.; He, S.; Li, Y.; Li, Z.; Liao, Q.; Gu, Y.; Wang, J.; Zou, B.; Li, Q.; Li, Z. Adv. Opt. Mater. 2020, 8, 1902036.
doi: 10.1002/adom.201902036
Li, J. A.; Zhou, J.; Mao, Z.; Xie, Z.; Yang, Z.; Xu, B.; Liu, C.; Chen, X.; Ren, D.; Pan, H.; Shi, G.; Zhang, Y.; Chi, Z. Angew. Chem., Int. Ed. 2018, 57, 6449.
doi: 10.1002/anie.201800762
Mukherjee, S.; Thilagar, P. Angew. Chem., Int. Ed. 2019, 58, 7922.
doi: 10.1002/anie.201811542
Ubba, E.; Tao, Y.; Yang, Z.; Zhao, J.; Wang, L.; Chi, Z. Chem.- Asian. J. 2018, 13, 3106.
doi: 10.1002/asia.201800926
Li, Q.; Li, Z. Adv. Sci. 2017, 4, 1600484.
doi: 10.1002/advs.201600484
Wang, C.; Xu, B.; Li, M.; Chi, Z.; Xie, Y.; Li, Q.; Li, Z. Mater. Horiz. 2016, 3, 220.
doi: 10.1039/C6MH00025H
Yang, J.; Gao, X.; Xie, Z.; Gong, Y.; Fang, M.; Peng, Q.; Chi, Z.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 15299.
doi: 10.1002/anie.201708119
Xu, S.; Liu, T.; Mu, Y.; Wang, Y. F.; Chi, Z.; Lo, C. C.; Liu, S.; Zhang, Y.; Lien, A.; Xu, J. Angew. Chem., Int. Ed. 2015, 54, 874.
doi: 10.1002/anie.201409767
Liu, F.; Bi, S.; Wang, X.; Leng, X.; Han, M.; Xue, B.; Li, Q.; Zhou, H.; Li, Z. Sci. China: Chem. 2019, 62, 739.
doi: 10.1007/s11426-018-9432-x
Yang, J.; Chi, Z.; Zhu, W.; Tang, B.; Li, Z. Sci. China: Chem. 2019, 62, 1090.
doi: 10.1007/s11426-019-9512-x
Liao, Q.; Gao, Q.; Wang, J.; Gong, Y.; Peng, Q.; Tian, Y.; Fan, Y.; Guo, H.; Ding, D.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2020, 59, 9946.
doi: 10.1002/anie.201916057
Song, Y.; Xu, L.; Wu, Q.; Xiao, S.; Zeng, H.; Gong, Y.; Li, C.; Cheng, S.; Li, Q.; Zhang, L.; Li, Z. Small Methods 2020, 4, 1900779.
doi: 10.1002/smtd.201900779
Zong, L.; Zhang, H.; Li, Y.; Gong, Y.; Li, D.; Wang, J.; Wang, Z.; Xie, Y.; Han, M.; Peng, Q.; Li, X.; Dong, J.; Qian, J.; Li, Q.; Li, Z. ACS Nano 2018, 12, 9532.
doi: 10.1021/acsnano.8b05090
Yang, J.; Li, Z. Chin. J. Org. Chem. 2019, 39, 3304 (in Chinese).
Zhou, Z.; Song, J.; Nie, L.; Chen, X. Chem. Soc. Rev. 2016, 45, 6597.
doi: 10.1039/C6CS00271D
Fang, M.; Yang, J.; Li. Z. Chin. J. Polym. Sci. 2019, 37, 383.
doi: 10.1007/s10118-019-2218-z
Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li. Z. Nat. Commun. 2018, 9, 840.
doi: 10.1038/s41467-018-03236-6
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Tiantian Zheng , Huiyi Wang , Huimin Li , Xuanhe Liu , Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
Laiying Zhang , Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Yanyang Li , Zongpei Zhang , Kai Li , Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043
(a) Grinding[12]. Reproduced with permission from Ref. [12]. Copyright 2019 John Wiley and Sons. (b) Scratching[13]. (c) Shaking[14]. (d) N2 Flow[14]. Reproduced with permission from Ref. [14]. Copyright 2018 John Wiley and Sons. (e) Pressing[15]. Reproduced with permission from Ref. [12]. Copyright 2019 John Wiley and Sons
(a) The piezoelectric theory illustrating ML phenomena upon cracking (Fracto-ML). Reproduced with permission from Ref. [18]. Copyright 2004 IOP Publishing, Ltd. (b) Electro-mechano-optical interactions and related effects (Elastico-ML). Reproduced with permission from ref. [23]. Copyright 2019 John Wiley and Sons. (c) Schematic energy level diagram of colored alkali halide crystals with ML effect (Plastico-ML)[1b]
(a) Reproduced with permission from Ref. [20]. Copyright 2020 American Chemical Society. (b) Reproduced with permission from Ref. [43]. Copyright 2019 John Wiley and Sons.
(a) ML spectra generated by simply scraping. (b) The recorder of ML spectra and strengthen of mechanical force at the same time.Reproduced with permission from Ref. [46]. Copyright 2020 Elsevier. (c) The conversion efficiency of ML detected by falling ball method. (d) ML effect of single particles by AFM. Reproduced with permission from Ref. [3]. Copyright 2006 Royal Society of Chemistry. (e) Light intensity distribution of ML composite materials under pressure.
(a) Based on Elasticoluminescence materials. Reproduced with permission from Ref. [5]. Copyright 2019 Elsevier. (b) Based on ML device of tPE-2-Th. Reproduced with permission from Ref. [46]. Copyright 2020 Elsevier.
(a) Molecular structures of NPC, FCO-CZs and BrFlu-CBr. (b) Multicolored luminescence based on NPC doped with different organic molecules. Reproduced with permission from Ref. [56]. Copyright 2018 Royal Society of Chemistry. (c) Dynamic ML color of FCO-CzS with the changeable molecular conformations under mechanical stimulation. Reproduced with permission from Ref. [57]. Copyright 2018 John Wiley and Sons. (d) Dynamic ML of BrFlu-CBr with the changeable dual-emission of fluorescence and phosphorescence. Reproduced with permission from Ref. [59]. Copyright 2018 John Wiley and Sons. (E) Multicolored ML effect by mixing two kinds of elastic materials with different ML colors. Reproduced with permission from Ref. [60]. Copyright 2013 John Wiley and Sons.
Reproduced with permission from Ref. [46]. Copyright 2020 Elsevier.
(a) Cochlear implant. (b) Intraocular pressure monitoring. (c) Teeth occlusion examination. Reproduced with permission from Ref. [64]. Copyright 2018 Elsevier.
(a, b) Schematic diagrams of photogenetic regulation. (c) Schematic diagram of mice in vivo experiment. (d) Comparative experiment of leg swing in mice.
(A) Failure early-warning. Reproduced with permission from Ref. [68]. Copyright 2018 Elsevier. (B) Monitoring of bridge construction. (C) Defect detection. Reproduced with permission from Ref. [5]. Copyright 2019 Elsevier.
(A) ML-EL dual-emission. Reproduced with permission from Ref. [68]. Copyright 2016 Elsevier. (B) Wind-driven display. (C) Magnetic-induced luminescence. Reproduced with permission from Ref. [74]. Copyright 2015 John Wiley and Sons.
(A) Solar cell systems driven by ML. Reproduced with permission from Ref. [5]. Copyright 2019 Elsevier. (B) Wind power generation device driven by ML. Reproduced with permission from Ref. [75]. Copyright 2018 Royal Society of Chemistry. (C) Devices integrated by ML layer and solar cells.
(A, B) Fabric devices based on ML materials. Reproduced with permission from Ref. [82]. Copyright 2019 American Chemical Society. Reproduced with permission from Ref. [83]. Copyright 2017 Royal Society of Chemistry. (C) Intelligent skin based on ML materials. Reproduced with permission from Ref. [84]. Copyright 2019 John Wiley and Sons.
(A) Pressure sensing matrix. Reproduced with permission from Ref. [87]. Copyright 2015 John Wiley and Sons. (B) Measurement of myocardial cell movement by MoS2 transistor array with ML material. Reproduced with permission from Ref. [88]. Copyright 2020 American Chemical Society.
(A) Information encryption. Reproduced with permission from Ref. [46]. Copyright 2020 Elsevier. (B) Anti-counterfeiting. Reproduced with permission from Ref. [90]. Copyright 2018 John Wiley and Sons. (C) Information storage. Reproduced with permission from Ref. [91]. Copyright 2019 Royal Society of Chemistry.
(a) Schematic diagram of detection device. (b) ML emission intensity with different thickness. (c) Relationship between thickness and ML intensity. (d) Cycle test with/without UV charging. (e) ML test in oral cavity. Reproduced with permission from Ref. [94]. Copyright 2018 American Chemical Society.