Citation: Chang Kai, Li Qianqian, Li Zhen. Advances in Mechanoluminescence and Its Applications[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3656-3671. doi: 10.6023/cjoc202006052 shu

Advances in Mechanoluminescence and Its Applications

  • Corresponding author: Li Qianqian, qianqian-alinda@163.com Li Zhen, lizhen@whu.edu.cn
  • Received Date: 24 June 2020
    Revised Date: 7 August 2020
    Available Online: 18 August 2020

    Fund Project: the National Natural Science Foundation of China 51673151Project supported by the National Natural Science Foundation of China (Nos. 51673151, 21734007)the National Natural Science Foundation of China 21734007

Figures(18)

  • In recent years, mechanoluminescence, as a unique luminescence phenomenon, exhibited huge potential applications and rapid development in stress detection, anti-counterfeiting, encryption, light sources and bio-imaging, etc. Recently, great efforts have been made on molecular aggregation science, molecular packing and intermolecular interaction in the solid state have been deeply understood, directly promoting the development and application of mechanoluminescence and photoluminescence materials. The phenomenon and mechanism of mechanoluminescence were firstly introduced, the relationship between mechanoluminescence and aggregation behaviors of organic compounds were discussed in detail. The measurement and characterization of mechanoluminescence, the relationship between applied stress and mechanoluminescence intensity, and the color of mechanoluminescence were briefly introduced, then, the current application of mechanoluminescence was highlighted. In the end, the prospect of organic mechanoluminescence materials was afforded.
  • 加载中
    1. [1]

      (a) Bacon, F. The Advancement of Learning, Press of P. F Collier & Son, New York, 1901, pp. 208~209.
      (b) Feng, A.; Smet, A. P. F. Materials 2018, 11, 484.

    2. [2]

      Xie, Y.; Li, Z. Chem 2018, 4, 943.  doi: 10.1016/j.chempr.2018.01.001

    3. [3]

      Sakai, K.; Koga, T.; Imai, Y.; Maehara, S.; Xu, C. N. Phys. Chem. Chem. Phys. 2006, 8, 2819.  doi: 10.1039/b604656h

    4. [4]

      Lavrov, A. Strain 2005, 41, 135.  doi: 10.1111/j.1475-1305.2005.00233.x

    5. [5]

      Zhang, J.-C.; Wang, X.; Marriott, G.; Xu, C.-N. Prog. Mater. Sci. 2019, 103, 678.  doi: 10.1016/j.pmatsci.2019.02.001

    6. [6]

      Chandra, B. P.; Rathore, A. S. Cryst. Res. Technol. 1995, 30, 885.  doi: 10.1002/crat.2170300702

    7. [7]

      Bünzli, J.-C. G.; Wong, K.-L. J. Rare Earths 2018, 36, 1.  doi: 10.1016/j.jre.2017.09.005

    8. [8]

      Zhang, H.; Wei, Y.; Huang, X.; Huang, W. J. Lumin. 2019, 207, 137.  doi: 10.1016/j.jlumin.2018.10.117

    9. [9]

      Chandra, B. P.; Chandra, V. K.; Jha, P.; Patel, R.; Shende, S. K.; Thaker, S.; Baghel, R. N. J. Lumin. 2012, 132, 2012.  doi: 10.1016/j.jlumin.2012.03.001

    10. [10]

      Chandra, B. P.; Chandra, V. K.; Jha, P. J. Lumin. 2013, 135, 139.  doi: 10.1016/j.jlumin.2012.10.009

    11. [11]

      Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.

    12. [12]

      Dang, Q.; Hu, L.; Wang, J.; Zhang, Q.; Han, M.; Luo, S.; Gong, Y.; Wang, C.; Li, Q.; Li, Z. Chem.-Eur. J. 2019, 25, 7031.  doi: 10.1002/chem.201901116

    13. [13]

      Liu, F.; Tu, Z.; Fan, Y.; Li, Q.; Li, Z. ACS Omega 2019, 4, 18609.  doi: 10.1021/acsomega.9b02416

    14. [14]

      Li, W.; Huang, Q.; Mao, Z.; Li, Q.; Jiang, L.; Xie, Z.; Xu, R.; Yang, Z.; Zhao, J.; Yu, T.; Zhang, Y.; Aldred, M. P.; Chi, Z. Angew. Chem., Int. Ed. 2018, 57, 12727.  doi: 10.1002/anie.201806861

    15. [15]

      Wang, J.; Chai, Z.; Wang, J.; Wang, C.; Han, M.; Liao, Q.; Huang, A.; Lin, P.; Li, C.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2019, 58, 17297.  doi: 10.1002/anie.201911648

    16. [16]

      Yan, C.; Yang, F.; Wu, M.; Yuan, Y.; Chen, F.; Chen, Y. Macromolecules 2019, 52, 9376.  doi: 10.1021/acs.macromol.9b02089

    17. [17]

      Yuan, Y.; Yuan, W.; Chen, Y. Sci. China Mater. 2016, 59, 507.  doi: 10.1007/s40843-016-5060-7

    18. [18]

      Chakravarty, A.; Phillipson, T. E. J. Phys. D: Appl. Phys. 2004, 37, 2175.  doi: 10.1088/0022-3727/37/15/020

    19. [19]

      Xie, Y.; Li, Z. Mater. Chem. Front. 2020, 4, 317.  doi: 10.1039/C9QM00580C

    20. [20]

      Li, Q.; Li, Z. Acc. Chem. Res. 2020, 53, 962.  doi: 10.1021/acs.accounts.0c00060

    21. [21]

      Chandra, B. P.; Chandra, V. K.; Jha, P. Phys. B 2015, 463, 62.  doi: 10.1016/j.physb.2015.01.030

    22. [22]

      Zhang, J.-C.; Long, Y.-Z.; Yan, X.; Wang, X.; Wang, F. Chem. Mater. 2016, 28, 4052.  doi: 10.1021/acs.chemmater.6b01550

    23. [23]

      Wang, X.; Xu, C. N.; Yamada, H.; Nishikubo, K.; Zheng, X. G. Adv Mater. 2005, 17, 1254.  doi: 10.1002/adma.200401406

    24. [24]

      Chandra, B. P.; Bagri, A. K.; Chandra, V. K. J. Lumin. 2010, 130, 309.  doi: 10.1016/j.jlumin.2009.09.008

    25. [25]

      Li, Q.; Tang, Y.; Hu, W.; Li, Z. Small 2018, 14, 1801560.  doi: 10.1002/smll.201801560

    26. [26]

      Li, Q. Q.; Li, Z. Sci. China Mater. 2020, 63, 177.  doi: 10.1007/s40843-019-1172-2

    27. [27]

      Wang, Y.; Yang, J.; Tian, Y.; Fang, M.; Liao, Q.; Wang, L.; Hu, W.; Tang, B. Z.; Li, Z. Chem. Sci. 2020, 11, 833.  doi: 10.1039/C9SC04632A

    28. [28]

      Tian, Y.; Gong, Y.; Liao, Q.; Wang, Y.; Ren, J.; Fang, M.; Yang, J.; Li, Z. Cell Rep. Phys. Sci. 2020, 1, 100052.  doi: 10.1016/j.xcrp.2020.100052

    29. [29]

      Liu, F.; Wu, F.; Ling, W.; Tu, Z.; Zhang, J.; Wei, Z.; Zhu, L.; Li, Q.; Li, Z. ACS Energy Lett. 2019, 4, 2514.  doi: 10.1021/acsenergylett.9b01539

    30. [30]

      Tu, J.; Liu, C.; Fan, Y.; Liu, F.; Chang, K.; Xu, Z.; Li, Q.; Chen, Y.; Li, Z. J. Mater. Chem. A 2019, 7, 15662.  doi: 10.1039/C9TA02488C

    31. [31]

      Xie, Y.; Gong, Y.; Han, M.; Zhang, F.; Peng, Q.; Xie, G.; Li, Z. Macromolecules 2019, 52, 896.  doi: 10.1021/acs.macromol.8b02051

    32. [32]

      Li, Y.; Han, M.; Yang, W.; Guo, J.; Chang, K.; Wang, J.; Min, J.; Li, Q.; Li, Z. Mater. Chem. Front. 2019, 3, 1840.  doi: 10.1039/C9QM00236G

    33. [33]

      Zink, J. I.; Hardy, G. E.; Sutton, J. E. J. Phys. Chem. 1976, 80, 248.  doi: 10.1021/j100544a007

    34. [34]

      Tu, J.; Fan, Y.; Wang, J.; Li, X.; Liu, F.; Han, M.; Wang, C.; Li, Q.; Li, Z. J. Mater. Chem. C 2019, 7, 12256.  doi: 10.1039/C9TC03515J

    35. [35]

      Fang, M.; Yang, J.; Liao, Q.; Gong, Y.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2017, 5, 9879.  doi: 10.1039/C7TC03641H

    36. [36]

      Xie, Y.; Tu, J.; Zhang, T.; Wang, J.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Z. Chem. Commun. 2017, 53, 11330.  doi: 10.1039/C7CC04663D

    37. [37]

      Liu, F.; Tu, J.; Wang, X.; Wang, J.; Gong, Y.; Han, M.; Dang, X.; Liao, Q.; Peng, Q.; Li, Q.; Li, Z. Chem. Commun. 2018, 54, 5598.  doi: 10.1039/C8CC03083A

    38. [38]

      Huang, G.; Jiang, Y.; Wang, J.; Li, Z.; Li, B. S.; Tang, B. Z. J. Mater. Chem. C 2019, 7, 12709.  doi: 10.1039/C9TC04501E

    39. [39]

      Wang, C.; Yu, Y.; Chai, Z.; He, F.; Wu, C.; Gong, Y.; Han, M.; Li, Q.; Li, Z. Mater. Chem. Front. 2019, 3, 32.  doi: 10.1039/C8QM00411K

    40. [40]

      Gong, Y.; Zhang, P.; Gu, Y.; Wang, J.; Han, M.; Chen, C.; Zhan, X.; Xie, Z.; Zou, B.; Peng, Q.; Chi, Z.; Li, Z. Adv. Opt. Mater. 2018, 6, 1800198.  doi: 10.1002/adom.201800198

    41. [41]

      Mu, Y.; Yang, Z.; Chen, J.; Yang, Z.; Li, W.; Tan, X.; Mao, Z.; Yu, T.; Zhao, J.; Zheng, S.; Liu, S.; Zhang, Y.; Chi, Z.; Xu, J.; Aldred, M. P. Chem. Sci. 2018, 9, 3782.  doi: 10.1039/C8SC00429C

    42. [42]

      Li, W.; Huang, Q.; Mao, Z.; Zhao, J.; Wu, H.; Chen, J.; Yang, Z.; Li, Y.; Yang, Z.; Zhang, Y.; Aldred, M. P.; Chi, Z. Angew. Chem., Int. Ed. 2020, 59, 3739.  doi: 10.1002/anie.201915556

    43. [43]

      Yu, Y.; Wang, C.; Wei, Y.; Fan, Y.; Yang, J.; Wang, J.; Han, M.; Li, Q.; Li, Z. Adv. Optical Mater. 2019, 7. 1900505.  doi: 10.1002/adom.201900505

    44. [44]

      Tu, J.; Liu, F.; Wang, J.; Li, X.; Gong, Y.; Fan, Y.; Han, M.; Li, Q.; Li, Z. ChemPhotoChem 2019, 3, 133.  doi: 10.1002/cptc.201800227

    45. [45]

      Yu, Y.; Fan, Y.; Wang, C.; Wei, Y.; Liao, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2019, 7, 13759.  doi: 10.1039/C9TC05218F

    46. [46]

      Wang, C.; Yu, Y.; Yuan, Y.; Ren, C.; Liao, Q.; Wang, J.; Chai, Z.; Li, Q.; Li, Z. Matter 2020, 2, 181.  doi: 10.1016/j.matt.2019.10.002

    47. [47]

      Fontenot, R. S.; Hollerman, W. A.; Aggarwal, M. D.; Bhat, K. N.; Goedeke, S. M. Measurement 2012, 45, 431.  doi: 10.1016/j.measurement.2011.10.031

    48. [48]

      Hollerman, W. A.; Fontenot, R. S.; Bhat, K. N.; Aggarwal, M. D.; Guidry, C. J.; Nguyen, K. M. Opt. Mater. 2012, 34, 1517.  doi: 10.1016/j.optmat.2012.03.011

    49. [49]

      Zhang, J.-C.; Xu, C.-N.; Wang, X.; Long, Y.-Z. Chem. Mater. 2014, 28, 4052.

    50. [50]

      Terasaki, N.; Xu, C.-N. J. Colloid Interf. Sci. 2014, 427, 62.  doi: 10.1016/j.jcis.2013.11.070

    51. [51]

      Zhang, J.-C.; Xu, C.-N.; Kamimura, S.; Terasawa, Y.; Yamada, H.; Wang, X. Opt. Express 2013, 21, 12976.  doi: 10.1364/OE.21.012976

    52. [52]

      Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 880.  doi: 10.1002/anie.201610453

    53. [53]

      Chen, Y.; Xu, C.; Xu, B.; Mao, Z.; Li, J.-A.; Yang, Z.; Peethani, N. R.; Liu, C.; Shi, G.; Gu, F. L.; Zhang, Y.; Chi, Z. Mater. Chem. Front. 2019, 3, 1800.  doi: 10.1039/C9QM00312F

    54. [54]

      Xiong, P.; Peng, M.; Cao, J.; Li, X. J. Am. Ceram. Soc. 2019, 102, 5899.  doi: 10.1111/jace.16444

    55. [55]

      Xie, Z.; Yu, T.; Chen, J.; Ubba, E.; Wang, L.; Mao, Z.; Su, T.; Zhang, Y.; Aldred, M. P.; Chi, Z. Chem. Sci. 2018, 9, 5787.  doi: 10.1039/C8SC01703D

    56. [56]

      Sun, Q.; Zhang, K.; Zhang, Z.; Tang, L.; Xie, Z.; Chi, Z.; Xue, S.; Zhang, H.; Yang, W. Chem. Commun. 2018, 54, 8206.  doi: 10.1039/C8CC04358B

    57. [57]

      Yang, J.; Qin, J.; Geng, P.; Wang, J.; Fang, M.; Li, Z. Angew. Chem., Int. Ed. 2018, 57, 14174.  doi: 10.1002/anie.201809463

    58. [58]

      Yang, J.; Fang, M.; Li, Z. InfoMat 2020, 2, 791.  doi: 10.1002/inf2.12107

    59. [59]

      Wang, J.; Wang, C.; Gong, Y.; Liao, Q.; Han, M.; Jiang, T.; Dang, Q.; Li, Y.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2018, 57, 16821.  doi: 10.1002/anie.201811660

    60. [60]

      Jeong, S. M.; Song, S.; Lee, S. K.; Ha, N. Y. Adv. Mater. 2013, 25, 6194.  doi: 10.1002/adma.201301679

    61. [61]

      Peng, D.; Chen, B.; Wang, F. Chempluschem 2015, 80, 1209.  doi: 10.1002/cplu.201500185

    62. [62]

      Kim, Y.; Kim, J. S.; Kim, G. W. Sci. Rep. 2018, 8, 12023.  doi: 10.1038/s41598-018-30633-0

    63. [63]

      Kim, Y.; Roy, S.; Jung, G. Y.; Oh, J. S.; Kim, G. W. Sci. Rep. 2019, 9, 15215.  doi: 10.1038/s41598-019-51771-z

    64. [64]

      Jiang, Y.; Wang, F.; Zhou, H.; Fan, Z.; Wu, C.; Zhang, J.; Liu, B.; Wang, Z. Mater. Sci. Eng. C 2018, 92, 374.  doi: 10.1016/j.msec.2018.06.056

    65. [65]

      Wu, X.; Zhu, X.; Chong, P.; Liu, J.; Andre, L. N.; Ong, K. S.; Brinson, K., Jr.; Mahdi, A. I.; Li, J.; Fenno, L. E.; Wang, H.; Hong, G. PNAS 2019, 116, 26332.  doi: 10.1073/pnas.1914387116

    66. [66]

      Yoshida, A.; Liu, L.; Tu, D.; Kainuma, S.; Xu, C.-N. J. Disaster Res. 2017, 12, 506.  doi: 10.20965/jdr.2017.p0506

    67. [67]

      Terasaki, N. Sens. Mater. 2016, 28, 827.

    68. [68]

      Xu, H.; Wang, F.; Wang, Z.; Zhou, H.; Zhang, G.; Zhang, J.; Wang, J.; Yang, S. Tribol. Lett. 2019, 67, 13.  doi: 10.1007/s11249-018-1120-0

    69. [69]

      Terasaki, N.; Xu, C.-N. IEEE Sens. J. 2013, 13, 3999.  doi: 10.1109/JSEN.2013.2264665

    70. [70]

      Shin, S. W.; Oh, J. P.; Hong, C. W.; Kim, E. M.; Woo, J. J.; Heo, G. S.; Kim, J. H. ACS Appl. Mater. Interfaces 2016, 8, 1098.  doi: 10.1021/acsami.5b07594

    71. [71]

      Jeong, S. M.; Song, S.; Kim, H.; Joo, K.-I.; Takezoe, H. Adv. Funct. Mater. 2016, 26, 4848.  doi: 10.1002/adfm.201601461

    72. [72]

      Jeong, S. M.; Song, S.; Kim, H. Nano Energy 2016, 21, 154.  doi: 10.1016/j.nanoen.2016.01.012

    73. [73]

      Jeong, S. M.; Song, S.; Joo, K.-I.; Kim, J.; Hwang, S.-H.; Jeong, J.; Kim, H. Energy Environ. Sci. 2014, 7, 3338.  doi: 10.1039/C4EE01776E

    74. [74]

      Wong, M. C.; Chen, L.; Tsang, M. K.; Zhang, Y.; Hao, J. Adv. Mater. 2015, 27, 4488.  doi: 10.1002/adma.201502015

    75. [75]

      Terasaki, N.; Xu, C.-N.; Imai, Y.; Yamada, H. Jpn. J. Appl. Phys. 2007, 46, 2385.  doi: 10.1143/JJAP.46.2385

    76. [76]

      Patel, D. K.; Cohen, B.-E.; Etgar, L.; Magdassi, S. Mater. Horiz. 2018, 5, 708.  doi: 10.1039/C8MH00296G

    77. [77]

      Lynch, J. P.; Pulliam, E.; Hoover, G.; Tiparti, D.; Ryu, D. Development of self-powered strain sensor using mechano-luminescent ZnS: Cu and mechano-optoelectronic P3HT. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, 2017 (DOI: 10.1117/12.2260318).

    78. [78]

      Kwon, S.; Hwang, Y. H.; Nam, M.; Chae, H.; Lee, H. S.; Jeon, Y.; Lee, S.; Kim, C. Y.; Choi, S.; Jeong, E. G.; Choi, K. C. Adv. Mater. 2020, 32, 1903488.  doi: 10.1002/adma.201903488

    79. [79]

      Shrivastava, S.; Trung, T. Q.; Lee, N. E. Chem. Soc. Rev. 2020, 49, 1812.  doi: 10.1039/C9CS00319C

    80. [80]

      Jeong, S. M.; Song, S.; Seo, H.-J.; Choi, W. M.; Hwang, S.-H.; Lee, S. G.; Lim, S. K. Adv. Sustainable Syst. 2017, 1, 1700126.  doi: 10.1002/adsu.201700126

    81. [81]

      Qian, X.; Cai, Z.; Su, M.; Li, F.; Fang, W.; Li, Y.; Zhou, X.; Li, Q.; Feng, X.; Li, W.; Hu, X.; Wang, X.; Pan, C.; Song, Y. Adv. Mater. 2018, 30, 1800291.  doi: 10.1002/adma.201800291

    82. [82]

      Park, H. J.; Kim, S.; Lee, J. H.; Kim, H. T.; Seung, W.; Son, Y.; Kim, T. Y.; Khan, U.; Park, N. M.; Kim, S. W. ACS Appl. Mater. Interfaces 2019, 11, 5200.  doi: 10.1021/acsami.8b16023

    83. [83]

      Zhang, J.; Bao, L.; Lou, H.; Deng, J.; Chen, A.; Hu, Y.; Zhang, Z.; Sun, X.; Peng, H. J. Mater. Chem. C 2017, 5, 8027.  doi: 10.1039/C7TC02428B

    84. [84]

      Liang, G.; Ruan, Z.; Liu, Z.; Li, H.; Wang, Z.; Tang, Z.; Mo, F.; Yang, Q.; Ma, L.; Wang, D.; Zhi, C. Adv. Electron. Mater. 2019, 5. 1900553.  doi: 10.1002/aelm.201900553

    85. [85]

      Monette, Z.; Kasar, A. K.; Menezes, P. L. J. Mater. Sci.-Mater. Electron. 2019, 30, 19675.  doi: 10.1007/s10854-019-02369-8

    86. [86]

      Wang, X.; Que, M.; Chen, M.; Han, X.; Li, X.; Pan, C.; Wang, Z. L. Adv. Mater. 2017, 29, 1605817.  doi: 10.1002/adma.201605817

    87. [87]

      Wang, X.; Zhang, H.; Yu, R.; Dong, L.; Peng, D.; Zhang, A.; Zhang, Y.; Liu, H.; Pan, C.; Wang, Z. L. Adv. Mater. 2015, 27, 2324.  doi: 10.1002/adma.201405826

    88. [88]

      Jang, J.; Kim, H.; Ji, S.; Kim, H. J.; Kang, M. S.; Kim, T. S.; Won, J. E.; Lee, J. H.; Cheon, J.; Kang, K.; Im, W. B.; Park, J. U. Nano Lett. 2020, 20, 66.  doi: 10.1021/acs.nanolett.9b02978

    89. [89]

      Arppe, R.; Sørensen, T. J. Nat. Rev. Chem. 2017, 1, 0031.  doi: 10.1038/s41570-017-0031

    90. [90]

      Zhang, J. C.; Pan, C.; Zhu, Y. F.; Zhao, L. Z.; He, H. W.; Liu, X.; Qiu, J. Adv. Mater. 2018, 30, 1804644.  doi: 10.1002/adma.201804644

    91. [91]

      Zuo, Y.; Xu, X.; Tao, X.; Shi, X.; Zhou, X.; Gao, Z.; Sun, X.; Peng, H. J. Mater. Chem. C 2019, 7, 4020.  doi: 10.1039/C9TC00641A

    92. [92]

      Kenry; Duan, Y.; Liu, B. Adv. Mater. 2018, 30, 1802394.  doi: 10.1002/adma.201802394

    93. [93]

      Xiong, P.; Peng, M. J. Mater. Chem. C 2019, 7, 6301.  doi: 10.1039/C9TC00242A

    94. [94]

      Li, L.; Wondraczek, L.; Li, L.; Zhang, Y.; Zhu, Y.; Peng, M.; Mao, C. ACS Appl. Mater. Interfaces 2018, 10, 14509.  doi: 10.1021/acsami.8b02530

    95. [95]

      Gong, Y.; He, S.; Li, Y.; Li, Z.; Liao, Q.; Gu, Y.; Wang, J.; Zou, B.; Li, Q.; Li, Z. Adv. Opt. Mater. 2020, 8, 1902036.  doi: 10.1002/adom.201902036

    96. [96]

      Li, J. A.; Zhou, J.; Mao, Z.; Xie, Z.; Yang, Z.; Xu, B.; Liu, C.; Chen, X.; Ren, D.; Pan, H.; Shi, G.; Zhang, Y.; Chi, Z. Angew. Chem., Int. Ed. 2018, 57, 6449.  doi: 10.1002/anie.201800762

    97. [97]

      Mukherjee, S.; Thilagar, P. Angew. Chem., Int. Ed. 2019, 58, 7922.  doi: 10.1002/anie.201811542

    98. [98]

      Ubba, E.; Tao, Y.; Yang, Z.; Zhao, J.; Wang, L.; Chi, Z. Chem.- Asian. J. 2018, 13, 3106.  doi: 10.1002/asia.201800926

    99. [99]

      Li, Q.; Li, Z. Adv. Sci. 2017, 4, 1600484.  doi: 10.1002/advs.201600484

    100. [100]

      Wang, C.; Xu, B.; Li, M.; Chi, Z.; Xie, Y.; Li, Q.; Li, Z. Mater. Horiz. 2016, 3, 220.  doi: 10.1039/C6MH00025H

    101. [101]

      Yang, J.; Gao, X.; Xie, Z.; Gong, Y.; Fang, M.; Peng, Q.; Chi, Z.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 15299.  doi: 10.1002/anie.201708119

    102. [102]

      Xu, S.; Liu, T.; Mu, Y.; Wang, Y. F.; Chi, Z.; Lo, C. C.; Liu, S.; Zhang, Y.; Lien, A.; Xu, J. Angew. Chem., Int. Ed. 2015, 54, 874.  doi: 10.1002/anie.201409767

    103. [103]

      Liu, F.; Bi, S.; Wang, X.; Leng, X.; Han, M.; Xue, B.; Li, Q.; Zhou, H.; Li, Z. Sci. China: Chem. 2019, 62, 739.  doi: 10.1007/s11426-018-9432-x

    104. [104]

      Yang, J.; Chi, Z.; Zhu, W.; Tang, B.; Li, Z. Sci. China: Chem. 2019, 62, 1090.  doi: 10.1007/s11426-019-9512-x

    105. [105]

      Liao, Q.; Gao, Q.; Wang, J.; Gong, Y.; Peng, Q.; Tian, Y.; Fan, Y.; Guo, H.; Ding, D.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2020, 59, 9946.  doi: 10.1002/anie.201916057

    106. [106]

      Song, Y.; Xu, L.; Wu, Q.; Xiao, S.; Zeng, H.; Gong, Y.; Li, C.; Cheng, S.; Li, Q.; Zhang, L.; Li, Z. Small Methods 2020, 4, 1900779.  doi: 10.1002/smtd.201900779

    107. [107]

      Zong, L.; Zhang, H.; Li, Y.; Gong, Y.; Li, D.; Wang, J.; Wang, Z.; Xie, Y.; Han, M.; Peng, Q.; Li, X.; Dong, J.; Qian, J.; Li, Q.; Li, Z. ACS Nano 2018, 12, 9532.  doi: 10.1021/acsnano.8b05090

    108. [108]

      Yang, J.; Li, Z. Chin. J. Org. Chem. 2019, 39, 3304 (in Chinese).
       

    109. [109]

      Zhou, Z.; Song, J.; Nie, L.; Chen, X. Chem. Soc. Rev. 2016, 45, 6597.  doi: 10.1039/C6CS00271D

    110. [110]

      Fang, M.; Yang, J.; Li. Z. Chin. J. Polym. Sci. 2019, 37, 383.  doi: 10.1007/s10118-019-2218-z

    111. [111]

      Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li. Z. Nat. Commun. 2018, 9, 840.  doi: 10.1038/s41467-018-03236-6

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    4. [4]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    5. [5]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    13. [13]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    14. [14]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    15. [15]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    18. [18]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

Metrics
  • PDF Downloads(562)
  • Abstract views(9860)
  • HTML views(3916)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return