Citation: Liu Yidi, Yang Qi, Li Yao, Zhang Long, Luo Sanzhong. Application of Machine Learning in Organic Chemistry[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3812-3827. doi: 10.6023/cjoc202006051 shu

Application of Machine Learning in Organic Chemistry

  • Corresponding author: Zhang Long, zhanglong@tsinghua.edu.cn Luo Sanzhong, luosz@tsinghua.edu.cn
  • Received Date: 24 June 2020
    Revised Date: 22 July 2020
    Available Online: 5 August 2020

    Fund Project: the Natural Science Foundation of China 21933008the National Science & Technology Fundamental Resource Investigation Program of China 2018FY201200the Natural Science Foundation of China 22031006Project supported by the National Science & Technology Fundamental Resource Investigation Program of China (No. 2018FY201200), the Tsinghua University Initiative Scientific Research Program (No. 2019Z07L01005) and the Natural Science Foundation of China (Nos. 22031006, 21672217, 21933008)the Natural Science Foundation of China 21672217the Tsinghua University Initiative Scientific Research Program 2019Z07L01005

Figures(14)

  • Driven by nowadays' computing power, big data technology as well as learning algorithm, artificial intelligence (AI) has gained trenmendous attentions and become a transformative approach in many research areas. One of the most extensively explored AI approaches in chemistry is (deep) machine learning, which provides new twists in the fields of organic chemistry. The workflow of machine learning (ML) study in organic chemistry is briefly introduced. Meanwhile, the application of ML in the accurate prediction of chemical properties, molecular de novo design, chemical reaction prediction, retrosynthetic analysis and artificial intelligence synthetic machine are also summarized. In the end, the current challenges in this field are analyzed and discussed.
  • 加载中
    1. [1]

      McCarthy, J.; Minsky, M. L.; Rochester, N.; Shannon, C. E. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955, AI Magazine, 2006, 27, 12.

    2. [2]

      Jordan, M. I.; Mitchell, T. M. Science 2015, 349, 255.  doi: 10.1126/science.aaa8415

    3. [3]

      Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; Hassabis, D. Nature 2016, 529, 484.  doi: 10.1038/nature16961

    4. [4]

      Skoraczyński, G.; Dittwald, P.; Miasojedow, B.; Szymkuć, S.; Gajewska, E. P.; Grzybowski, B. A.; Gambin, A. Sci. Rep. 2017, 7, 3582.  doi: 10.1038/s41598-017-02303-0

    5. [5]

      Samuel, A. L. IBM J. Res. Dev. 1959, 3, 210.  doi: 10.1147/rd.33.0210

    6. [6]

      Tenenbaum, J. B.; Kemp, C.; Griffiths, T. L.; Goodman, N. D. Science 2011, 331, 1279.  doi: 10.1126/science.1192788

    7. [7]

      (a) Rupp, M. Phys. Rev. Lett. 2012, 108, 058301.
      (b) Müller, K.-R. J. Chem. Theory Comput. 2013, 9, 3404.

    8. [8]

      Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M. K.; Burke, K.; Müller, K.-R. Nat. Commun. 2017, 8, 872.  doi: 10.1038/s41467-017-00839-3

    9. [9]

    10. [10]

    11. [11]

      (a) Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.
      (b) Segler, M. H. S.; Waller, M. P. Chem.-Eur. J. 2017, 23, 5966.

    12. [12]

      Granda, J. M.; Donina, L.; Dragone, V.; Long, D.-L.; Cronin, L. Nature 2018, 559, 377.  doi: 10.1038/s41586-018-0307-8

    13. [13]

      Warr, W. A. Mol. Inf. 2014, 33, 469.  doi: 10.1002/minf.201400052

    14. [14]

      Blum, L. C.; Reymond, J.-L. J. Am. Chem. Soc. 2009, 131, 8732.  doi: 10.1021/ja902302h

    15. [15]

      Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L. J. Chem. Inf. Model. 2012, 52, 2864.  doi: 10.1021/ci300415d

    16. [16]

      Delaney, J. S. J. Chem. Inf. Comput. Sci. 2004, 44, 1000.  doi: 10.1021/ci034243x

    17. [17]

      Mobley, D. L.; Guthrie, J. P. J. Comput.-Aided Mol. Des. 2014, 28, 711.  doi: 10.1007/s10822-014-9747-x

    18. [18]

      Sterling, T.; Irwin, J. J. J. Chem. Inf. Model. 2015, 55, 2324.  doi: 10.1021/acs.jcim.5b00559

    19. [19]

      (a) Akhondi, S. A.; Klenner, A. G.; Tyrchan, C.; Manchala, A. K.; Boppana, K.; Lowe, D.; Zimmermann, M.; Jagarlapudi, S. A. R. P.; Sayle, R.; Kors, J. A.; Muresan, S. PloS One 2014, 9, el07477.
      (b) Southan, C. Drug Discovery Today: Technol. 2015, 14, 3.
      (c) Lowe, D. M. PhD. Dissertation, University of Cambridge, Cambridge, 2012.

    20. [20]

      Manickam, Y.; Chaturvedi, R.; Babbar, P.; Malhotra, N.; Jain, V.; Sharma, A. Drug Discovery Today 2018, 23, 6.

    21. [21]

      (a) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Landrum, G. A. J. Chem. Inf. Model. 2015, 55, 39.
      (b) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum, G. A. J. Med. Chem. 2016, 59, 4385.

    22. [22]

      Rahman, S. A.; Torrance, G.; Baldacci, L.; Cuesta, S. M.; Fenninger, F.; Gopal, N.; Choudhary, S.; May, J. W.; Holliday, G. L.; Steinbeck, C.; Thornton, J. M. Bioinformatics 2016, 32, 2065.  doi: 10.1093/bioinformatics/btw096

    23. [23]

      Cooper, T. W. J.; Campbell, I. B.; Macdonald, S. J. F. Angew. Chem., Int. Ed. 2010, 49, 8082.  doi: 10.1002/anie.201002238

    24. [24]

      Buitrago Santanilla, A.; Regalado, E. L.; Pereira, T.; Shevlin, M.; Bateman, K.; Campeau, L.-C.; Schneeweis, J.; Berritt, S.; Shi, Z.-C.; Nantermet, P.; Liu, Y.; Helmy, R.; Welch, C. J.; Vachal, P.; Davies, I. W.; Cernak, T.; Dreher, S. D. Science 2015, 347, 49.  doi: 10.1126/science.1259203

    25. [25]

      Tetko, I. V.; Engkvist, O.; Chen, H. Future Med. Chem. 2016, 8, 1801.  doi: 10.4155/fmc-2016-0163

    26. [26]

      ChemAxon http://chemaxon.com.

    27. [27]

      Landrum, G. RDKit: Open-source Cheminformatics, 2014, http://www.rdkit.org.

    28. [28]

      (a) Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. J. Chem. Inf. Comput. Sci. 2003, 43, 493.
      (b) Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E. L. Curr. Pharm. Des. 2006, 12, 2111.
      (c) Chemistry Development Kit, 2014, https://cdk.github.io/.

    29. [29]

      Durant, J. L.; Leland, B. A.; Henry, D. R.; Nourse, J. G. J. Chem. Inf. Comput. Sci. 2002, 42, 1273.  doi: 10.1021/ci010132r

    30. [30]

      (a) Cereto-Massague, A.; Jose Ojeda, M.; Valls, C.; Mulero, M.; Garcia-Vallve, S.; Pujadas, G. Methods 2015, 71, 58.
      (b) Muegge, I.; Mukherjee, P. Expert Opin. Drug Discovery 2016, 11, 137.

    31. [31]

      (a) Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. J. Chem. Inf. Comput. Sci. 2004, 44, 170.
      (b) Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. J. Chem. Inf. Comput. Sci. 2004, 44, 1708.

    32. [32]

      Morgan, H. L. J. Chem. Doc. 1965, 5, 107.  doi: 10.1021/c160017a018

    33. [33]

      Rogers, D.; Hahn, M. J. Chem. Inf. Model. 2010, 50, 742.  doi: 10.1021/ci100050t

    34. [34]

      O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. J. Cheminf. 2011, 3, 33.  doi: 10.1186/1758-2946-3-33

    35. [35]

      Indigo-GGA Software Services 2014. https://github.com/ggasoft-ware/indigo.

    36. [36]

      Weininger, D. J. Chem. Inf. Comput. Sci. 1988, 28, 31.  doi: 10.1021/ci00057a005

    37. [37]

      Heller, S.; McNaught, A.; Stein, S.; Tchekhovskoi, D.; Pletnev, I. J. Cheminf. 2013, 5, 7.  doi: 10.1186/1758-2946-5-7

    38. [38]

      Jeliazkova, N.; Kochev, N. Mol. Inf. 2011, 30, 707.  doi: 10.1002/minf.201100028

    39. [39]

      Raymond, J. W.; Willett, P. J. Comput.-Aided Mol. Des. 2002, 16, 521.  doi: 10.1023/A:1021271615909

    40. [40]

      Rupp, M.; Tkatchenko, A.; Muller, K. R.; von Lilienfeld, O. A. Phys. Rev. Lett. 2012, 108, 058301.  doi: 10.1103/PhysRevLett.108.058301

    41. [41]

      (a) Hochuli, J.; Helbling, A.; Skaist, T.; Ragoza, M.; Koes, D. R. J. Mol. Graphics Modell. 2018, 84, 96.
      (b) Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D. R. J. Chem. Inf. Model. 2017, 57, 942.

    42. [42]

      Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631.  doi: 10.1126/science.aau5631

    43. [43]

      (a) Sutton, R. S. Mach. Learn. 1988, 3, 9.
      (b) François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M. G.; Pineau, J. Found. Trends Mach. Learn. 2018, 11, 219.

    44. [44]

      (a) Koski, T.; Noble, J. Mathematica Applicanda (Matematyka Stosowana) 2012, 40, 51.
      (b) Spiegelhalter, D. J. J. R. Statist. Soc. C 1998, 47, 115.

    45. [45]

      Quinlan, J. R. Mach. Learn. 1986, 1, 81.

    46. [46]

      (a) Domingos, P.; Pazzani, M. Mach. Learn. 1997, 29, 103.
      (b) Webb, G. I.; Boughton, J. R.; Wang, Z. Mach. Learn. 2005, 58, 5.
      (c) Maron, M. E. J. ACM 1961, 8, 404.

    47. [47]

      Cortes, C.; Vapnik, V. Mach. Learn. 1995, 20, 273.

    48. [48]

      (a) Achtert, E.; Böhm, C.; Kriegel, H.-P.; Kröger, P.; Müller-Gorman, I.; Zimek, A. In Finding Hierarchies of Subspace Clusters, Knowledge Discovery in Databases: PKDD 2006 Series 4213, Springer Berlin Heidelberg, Heidelberg, 2006, pp. 446~453.
      (b) Kriegel, H.-P.; Kröger, P.; Zimek, A. WIREs Data Mining Knowl. Discov. 2012, 2, 351.
      (c) Sibson, R. Comput. J. 1973, 16, 30.
      (d) Banerjee, A.; Dave, R. N. In Validating Clusters using the Hopkins Statistic, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No. 04CH37542), IEEE, Budapest, 2004, pp. 149~153.
      (e) Estivill-Castro, V. SIGKDD Explor. Newsl. 2002, 4, 65.

    49. [49]

      (a) Breiman, L. Mach. Learn. 2001, 45, 5.
      (b) Ho, T. K. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832.

    50. [50]

      Zhou, Z. H. Machine Learning, Tsinghua University Press, Beijing, 2016 (in Chinese).

    51. [51]

      Pedregosa, F.; Varoquaux, G.; Gramfort, V.; Michel, B.; Thirion, O.; Grisel, M.; Blondel, P.; Prettenhofer, R.; Weiss, V.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. J. Mach. Learn. Res. 2011, 12, 2825.

    52. [52]

      (a) Maass, W. Neural Net. 1997, 10, 1659.
      (b) Wang, W.; Pedretti, G.; Milo, V.; Carboni, R.; Calderoni, A.; Ramaswamy, N.; Spinelli, A. S.; Ielmini, D. Sci. Adv. 2018, 4, eaat4752.
      (c) Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S. R.; Masquelier, T.; Maida, A. Neural Netw. 2019, 111, 47.

    53. [53]

      McCulloch, W. S.; Pitts, W. Bull Math. Biophys. 1943, 5, 115.  doi: 10.1007/BF02478259

    54. [54]

      Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. J. Mach. Learn. Res. 2014, 15, 1929.

    55. [55]

      Li, W.; Matthew, Z.; Sixin, Z.; Yann Le, C.; Rob, F. In Proceedings of the 30th International Conference on Machine Learning, Proceedings of Machine Learning Research Series 28, Eds.: Dasgupta, S.; McAllester, D., Proceedings of Machine Learning Research, Atlanta, 2013, pp. 1058~1066.

    56. [56]

      Nair, V.; Hinton, G. E. In International Conference on Machine Learning, Proceedings of the 27th International Conference on Machine Learning, International Conference on Machine Learning Series 27, International Conference on Machine Learning, Haifa, 2010.

    57. [57]

      (a) Zhou, J.; Cui, G.; Zhang, Z. Y.; Yang, C.; Liu, Z. Y.; Wang, L. F.; Li, C. C.; Sun, M. arXiv e-prints 2018, arXiv: 1812.08434.
      (b) Zhang, Z. W.; Cui, P.; Zhu, W. W. IEEE Trans. Knowl. Data Eng. 2020, doi: 10.1109/TKDE.2020.2981333.

    58. [58]

      (a) Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. In Advances in Neural Information Processing Systems 28, Neural Information Processing Systems 2015, Eds.: Cortes, C.; Lawrence, N.; Lee D.; Sugiyama, M.; Garnett, R., Neural Information Processing Systems, 2015, pp. 2215~2223.
      (b) Coley, C. W.; Jin, W.; Rogers, L.; Jamison, T. F.; Jaakkola, T. S.; Green, W. H.; Barzilay, R.; Jensen, K. F. Chem. Sci. 2019, 10, 370.

    59. [59]

      Mitchell, J. B. O. Wires Comput. Mol. Sci. 2014, 4, 468.  doi: 10.1002/wcms.1183

    60. [60]

      Corey, E. J.; Wipke, W. T. Science 1969, 166, 178.  doi: 10.1126/science.166.3902.178

    61. [61]

      Muratov, E. N.; Bajorath, J.; Sheridan, R. P.; Tetko, I. V.; Filimonov, D.; Poroikov, V.; Oprea, T. I.; Baskin, I. I.; Varnek, A.; Roitberg, A.; Isayev, O.; Curtalolo, S.; Fourches, D.; Cohen, Y.; Aspuru-Guzik, A.; Winkler, D. A.; Agrafiotis, D.; Cherkasov, A.; Tropsha, A. Chem. Soc. Rev. 2020, 49, 3525.  doi: 10.1039/D0CS00098A

    62. [62]

      Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. J. Chem. Inf. Model. 2015, 55, 263.  doi: 10.1021/ci500747n

    63. [63]

      Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. Front. Environ. Sci. 2016, 3, 80.

    64. [64]

      (a) Ramsundar, B.; Liu, B.; Wu, Z.; Verras, A.; Tudor, M.; Sheridan, R. P.; Pande, V. J. Chem. Inf. Model. 2017, 57, 2068.
      (b) Koutsoukas, A.; Monaghan, K. J.; Li, X.; Huan, J. J. Cheminf. 2017, 9, 42.
      (c) Lenselink, E. B.; ten Dijke, N.; Bongers, B.; Papadatos, G.; van Vlijmen, H. W. T.; Kowalczyk, W.; Ijzerman, A. P.; van Westen, G. J. P. J. Cheminf. 2017, 9, 45.

    65. [65]

      (a) Subramanian, G.; Ramsundar, B.; Pande, V.; Denny, R. A. J. Chem. Inf. Model. 2016, 56, 1936.
      (b) Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Mol. Pharm. 2016, 13, 2524.
      (c) Lusci, A.; Pollastri, G.; Baldi, P. J. Chem. Inf. Model. 2013, 53, 1563.
      (d) Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. J. Chem. Inf. Model. 2015, 55, 208.

    66. [66]

      Ryu, S.; Kwon, Y.; Kim, W. Y. Chem. Sci. 2019, 10, 8438.  doi: 10.1039/C9SC01992H

    67. [67]

      Gaulton, A.; Hersey, A.; Nowotka, M.; Patrícia Bento, A.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L. J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M. P.; Overington, J. P.; Papadatos, G.; Smit, I.; Leach, A. L. Nucleic Acids Res. 2017, 45, 945.  doi: 10.1093/nar/gkw1074

    68. [68]

      (a) Fraczkiewicz, R.; Lobell, M.; Göller, A. H.; Krenz, U.; Schoenneis, R.; Clark, R. D.; Hillisch. A. J. Chem. Inf. Model. 2015, 55, 389.
      (b) Fraczkiewicz, R.; Lobell, M.; Göller, A. H.; Krenz, U.; Schoenneis, R.; Clark, R. D.; Hillisch, A. J. Chem. Inf. Model. 2015, 55, 389.

    69. [69]

      Roszak, R.; Beker, W.; Molga, K.; Grzybowski, B. A. J. Am. Chem. Soc. 2019, 141, 17142.  doi: 10.1021/jacs.9b05895

    70. [70]

      Yang, Q.; Li, Y.; Yang, J.-D.; Liu, Y. D.; Zhang, L.; Luo, S. Z.; Cheng, J.-P. Angew. Chem., Int. Ed. 2020, 59, 19282.  doi: 10.1002/anie.202008528

    71. [71]

      Yang, J.-D.; Xue, X.-S.; Ji, P.; Li, X.; Cheng, J.-P. Internet Bond-energy Databank (pKa and BDE): iBonD Home Page, http://ibond.chem.tsinghua.edu.cn or http://ibond.nankai.edu.cn.

    72. [72]

      Hall, L. H. J. Chem. Inf. Comput. Sci. 1995, 35, 1039.  doi: 10.1021/ci00028a014

    73. [73]

      Feng, C.; Sharman, E.; Ye, S.; Luo, Y.; Jiang, J. Sci. China:Chem. 2019, 62, 1698.  doi: 10.1007/s11426-019-9619-8

    74. [74]

      Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Proceedings of the 34th International Conference on Machine Learning, In Proceedings of Machine Learning Research Series 70, Eds.: Precup, D.; Teh, Y. W., Proceedings of Machine Learning Research, Sydney, 2017, pp. 1263~1272.

    75. [75]

      Ertl, P.; Lewis, R.; Martin, E.; Polyakov, V. arXiv e-prints 2017, arXiv: 1712.07449.

    76. [76]

      Liang, L.; Deng, C. L.; Zhang, Y. M.; Hua, Y.; Liu, H. C.; Lu, T.; Chen, Y. D. Prog. Pharm. Sci. 2020, 44, 18(in Chinese).

    77. [77]

      Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. Mol. Pharm. 2017, 14, 3098.  doi: 10.1021/acs.molpharmaceut.7b00346

    78. [78]

      Goodfellow, I. arXiv e-prints 2016, arXiv: 1701.00160.

    79. [79]

      Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.; Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy, D. A.; Kuznetsov, M. D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R. R.; Zhebrak, A.; Minaeva, L. I.; Zagribelnyy, B. A.; Lee, L. H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A. Nat Biotechnol. 2019, 37, 1038.  doi: 10.1038/s41587-019-0224-x

    80. [80]

      Yu, L. T.; Zhang, W. N.; Wang, J.; Yu, Y. arXiv e-prints 2016, arXiv: 1609.05473.

    81. [81]

      Jaques, N.; Gu, S.; Bahdanau, D.; Hernández-Lobato, J. M.; Turner, R. E.; Eck, D. arXiv e-prints 2016, arXiv: 1611.02796.

    82. [82]

      Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525.  doi: 10.1021/cr60274a001

    83. [83]

      Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.; Hopkins, A. L. Nat. Chem. 2012, 4, 90.  doi: 10.1038/nchem.1243

    84. [84]

      Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. J. Cheminf. 2017, 9, 48.  doi: 10.1186/s13321-017-0235-x

    85. [85]

      Benhenda, M. arXiv e-prints 2017, arXiv: 1708.08227.

    86. [86]

      (a) Metz, L.; Poole, B.; Pfau, D.; Sohl-Dickstein, J. arXiv e-prints 2016, arXiv: 1611.02163.
      (b) Unterthiner, T.; Nessler, B.; Seward, C.; Klambauer, G.; Heusel, M.; Ramsauer, H.; Hochreiter, S. arXiv e-prints 2017, arXiv: 1708.08819.

    87. [87]

      Corey, E. J.; Wipke, W. T.; Cramer, R. D.; Howe, W. J. J. Am. Chem. Soc. 1972, 94, 431.  doi: 10.1021/ja00757a021

    88. [88]

      Hendrickson, J. B. Recl. Trav. Chim. Pays-Bas. 1992, 111, 323.  doi: 10.1002/recl.19921110611

    89. [89]

      (a) Todd, M. H. Chem. Soc. Rev. 2005, 34, 247.
      (b) Szymkuć, S.; Gajewska, E. P.; Klucznik, T.; Molga, K.; Dittwald, P.; Startek, M.; Bajczyk, M.; Grzybowski, B. A. Angew. Chem., Int. Ed. 2016, 55, 5904.

    90. [90]

      de Almeida, A. F.; Moreira, R.; Rodrigues, T. Nat. Rev. Chem. 2019, 3, 589.  doi: 10.1038/s41570-019-0124-0

    91. [91]

      Kayala, M. A.; Azencott, C.-A.; Chen, J. H.; Baldi, P. J. Chem. Inf. Model. 2011, 51, 2209.  doi: 10.1021/ci200207y

    92. [92]

      Kayala, M. A.; Baldi, P. J. Chem. Inf. Model. 2012, 52, 2526.  doi: 10.1021/ci3003039

    93. [93]

      Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C. A.; Bekas, C.; Lee, A. A. ACS Cent. Sci. 2019, 5, 1572.  doi: 10.1021/acscentsci.9b00576

    94. [94]

      McDaniel, D. H.; Brown, H. C. J. Org. Chem. 1958, 23, 420.  doi: 10.1021/jo01097a026

    95. [95]

      (a) Friedman, M.; Wall, J. S. J. Am. Chem. Soc. 1964, 86, 3735.
      (b) Friedman, M.; Cavins, J. F.; Wall, J. S. J. Am. Chem. Soc. 1965, 87, 3672.
      (c) Friedman, M.; Wall, J. S. J. Org. Chem. 1966, 31, 2888.

    96. [96]

      Toropov, A. A.; Kudyshkin, V. O.; Voropaeva, N. L.; Ruban, I. N.; Rashidova, S. S. J. Struct. Chem. 2004, 45, 945.  doi: 10.1007/s10947-005-0084-8

    97. [97]

      Yu, X.; Yi, B.; Wang, X. Eur. Polym. J. 2008, 44, 3997.  doi: 10.1016/j.eurpolymj.2008.09.028

    98. [98]

      Morrill, J. A.; Biggs, J. H.; Bowman, C. N.; Stansbury, J. W. J. Mol. Graphics Modell. 2011, 29, 763.  doi: 10.1016/j.jmgm.2010.12.009

    99. [99]

      Schwöbel, J. A. H.; Wondrousch, D.; Koleva, Y. K.; Madden, J. C.; Cronin, M. T. D.; Schüürmann, G. Chem. Res. Toxicol. 2010, 23, 1576.  doi: 10.1021/tx100172x

    100. [100]

      Wondrousch, D.; Böhme, A.; Thaens, D.; Ost, N.; Schüürmann, G. J. Phys. Chem. Lett. 2010, 1, 1605.  doi: 10.1021/jz100247x

    101. [101]

    102. [102]

      Halberstam, N. M.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Mendeleev Commun. 2002, 12, 185.  doi: 10.1070/MC2002v012n05ABEH001620

    103. [103]

      Harper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem. 2012, 4, 366.  doi: 10.1038/nchem.1297

    104. [104]

      Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186.  doi: 10.1126/science.aar5169

    105. [105]

      Singh, S.; Pareek, M.; Changotra, A.; Banerjee, S.; Bhaskararao, B.; Balamurugan, P.; Sunoj, R. B. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 1339.  doi: 10.1073/pnas.1916392117

    106. [106]

      Li, X.; Zhang, S.-Q.; Xu, L.-C.; Hong. X. Angew. Chem., Int. Ed. 2020, 59, 13253.  doi: 10.1002/anie.202000959

    107. [107]

      Sandfort, F.; Strieth-Kalthoff, F.; Kuhnemund, M.; Beecks, C.; Glorius, F. Chem 2020, 6, 1.  doi: 10.1016/j.chempr.2019.12.023

    108. [108]

      Lin, A. I.; Madzhidov, T. I.; Klimchuk, O.; Nugmanov, R. I.; Antipin, I. S.; Varnek, A. J. Chem. Inf. Model. 2016, 56, 2140.  doi: 10.1021/acs.jcim.6b00319

    109. [109]

      Marcou, G.; Aires, de Sousa. J.; Latino, D. A. R. S.; de Luca, A.; Horvath, D.; Rietsch, V.; Varnek, A. J. Chem Inf. Model. 2015, 55, 239.  doi: 10.1021/ci500698a

    110. [110]

      Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.; Jensen, K. F. ACS Cent. Sci. 2018, 4, 1465.  doi: 10.1021/acscentsci.8b00357

    111. [111]

      Struebing, H.; Ganase, Z.; Karamertzanis, P.; Siougkrou, E.; Haycock, P.; Piccione, P. M.; Armstrong, A.; Galindo, A.; Adjiman, C. S. Nat. Chem. 2013, 5, 952.  doi: 10.1038/nchem.1755

    112. [112]

      Häse, F.; Roch, L. M.; Kreisbeck, C.; Aspuru-Guzik, A. ACS Cent. Sci. 2018, 4, 1134.  doi: 10.1021/acscentsci.8b00307

    113. [113]

      (a) Baskin, I. I.; Madzhidov, T. I.; Antipin, I. S.; Varnek, A. A. Russ. Chem. Rev. 2017, 86, 1127.
      (b) Cook, A.; Johnson, A. P.; Law, J.; Mirzazadeh, M.; Ravitz, O.; Simon, A. Science 2012, 2, 79.
      (c) Zefirov, N. S.; Gordeeva, E. V. Russ. Chem. Rev. 1987, 56, 1002.

    114. [114]

      Coley, C. W.; Green, W. H.; Jensen, K. F. Acc. Chem. Res. 2018, 51, 1281.  doi: 10.1021/acs.accounts.8b00087

    115. [115]

      Varnek, V.; Baskin, I. I. In Systems Medicine, Vol. 2, Eds.: Wolkenhauer, O., Academic Press, Oxford, 2021, pp. 190~197.

    116. [116]

      Law, J.; Zsoldos, Z.; Simon, A.; Reid, D.; Liu, Y.; Khew, S. Y.; Johnson, A. P.; Major, S.; Wade, R. A.; Ando, H. Y. J. Chem. Inf. Model. 2019, 49, 593.

    117. [117]

      Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F. ACS Cent. Sci. 2017, 3, 1237.  doi: 10.1021/acscentsci.7b00355

    118. [118]

      Liu, B.; Ramsundar, B.; Kawthekar, P.; Shi, J.; Gomes, J.; Luu Nguyen, Q.; Ho, S.; Sloane, J.; Wender, P.; Pande, V. ACS Cent. Sci. 2017, 3, 1103.  doi: 10.1021/acscentsci.7b00303

    119. [119]

      Lin, L. J.; Xu, Y. J.; Pei, J. F.; Lai, L, H. Chem. Sci. 2020, 11, 3355.  doi: 10.1039/C9SC03666K

    120. [120]

      Schwaller, P.; Petraglia, R.; Zullo, V.; Nair, V. H.; Haeuselmann, R. A.; Pisoni, R.; Bekas, C.; Iuliano, A.; Laino, T. Chem. Sci. 2020, 11, 3316.  doi: 10.1039/C9SC05704H

    121. [121]

      (a) Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.
      (b) Satoh, H.; Funatsu, K. J. Chem. Inf. Comput. Sci. 1995, 35, 34.

    122. [122]

      Schwaller, P.; Vaucher, A.; Nair, V. H.; Laino, T.; Reymond, J.-L. ChemRxiv Preprint 2019, https://doi.org/10.26434/chemrxiv.9897365.v2.  doi: 10.26434/chemrxiv.9897365.v2

    123. [123]

      (a) Trobe, M.; Burke, M. D. Angew. Chem., Int. Ed. 2018, 57, 4192.
      (b) Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M. Angew. Chem., Int. Ed. 2015, 54, 3449.

    124. [124]

      Sans, V.; Cronin, L. Chem. Soc. Rev. 2016, 45, 2032.  doi: 10.1039/C5CS00793C

    125. [125]

      Houben, C.; Lapkin, A. A. Curr. Opin. Chem. Eng. 2015, 9, 1.  doi: 10.1016/j.coche.2015.07.001

    126. [126]

      Perera, D.; Tucker, J. W.; Brahmbhatt, S.; Helal, C. J.; Chong, A.; Farrell, W.; Richardson, P.; Sach, N. W. Science 2018, 359, 429.  doi: 10.1126/science.aap9112

    127. [127]

      Cortés-Borda, D.; Wimmer, E.; Gouilleux, B.; Barré, E.; Oger, N.; Goulamaly, L.; Peault, L.; Charrier, B.; Truchet, C.; Giraudeau, P.; Rodriguez-Zubiri, M.; Le Grognec, E.; Felpin, F.-X. J. Org. Chem. 2018, 83, 14286.  doi: 10.1021/acs.joc.8b01821

    128. [128]

      Steiner, S.; Wolf, J.; Glatze, S.; Andreou, A.; Granda, J. M.; Keenan, G.; Hinkley, T.; Aragon-Camarasa, G.; Kitson, P. J.; Angelone, D.; Cronin, L. Science 2019, 363, eaav2211.  doi: 10.1126/science.aav2211

    129. [129]

      Coley, C. W.; Thomas D. A.; Lummiss, J. A. M.; Jaworski, J. N.; Breen, C. P.; Schultz, V.; Hart, T.; Fishman, J. S.; Rogers, L.; Gao, H.; Hicklin, R. W.; Plehiers, P. P.; Byington, J.; Piotti, J. S.; Green, W. H.; Hart, A. J.; Jamison, T. F.; Jensen, K, F. Science 2019, 365, eaax1566.  doi: 10.1126/science.aax1566

    130. [130]

      Chatterjee, S.; Guidi, M.; Seeberger, P. H.; Gilmore. K. Nature 2020, 579, 379.  doi: 10.1038/s41586-020-2083-5

    131. [131]

      (a) Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. J. Med. Chem. 2012, 55, 6582.
      (b) Sun, J.; Jeliazkova, N.; Chupakhin, V.; Golib-Dzib, J.-F.; Engkvist, O.; Carlsson, L.; Wegner, J.; Ceulemans, H.; Georgiev, I.; Jeliazkov, V.; Kochev, N.; Ashby, T. J.; Chen, H. J. Cheminf. 2017, 9, 17.

    132. [132]

      Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; Li, F.-F. Int. J. Comput. Vision 2015, 115, 211.  doi: 10.1007/s11263-015-0816-y

    133. [133]

      Miller, G. A. Commun. ACM 1995, 38, 39.

    134. [134]

      Wu, Z.; Ramsundar, B.; Feinberg, Evan N.; Gomes, J.; Geniesse, C.; Pappu, A. S.; Leswing, K.; Pande, V. Chem. Sci. 2018, 9, 513.  doi: 10.1039/C7SC02664A

    135. [135]

      Kitchin, J. R. Nat. Cat. 2018, 1, 230.  doi: 10.1038/s41929-018-0056-y

    136. [136]

      Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.  doi: 10.1038/nature17439

    137. [137]

      Struble, T. J.; Alvarez, J. C.; Brown, S. P.; Chytil, M.; Cisar, J.; DesJarlais, R. L.; Engkvist, O, ; Frank, S. A.; Greve, D. R.; Griffin, D. J.; Hou, X. J.; Johannes, J. W.; Kreatsoulas, C.; Lahue, B.; Mathea, M.; Mogk, G.; Nicolaou, C. A.; Palmer, A. D.; Price, D. J.; Robinson, R. I.; Salentin, S.; Xing, L.; Jaakkola, T.; Green, W. H.; Barzilay, R.; Coley, C. W.; Jensen, K. F. J. Med. Chem. 2020, 63, 8667.  doi: 10.1021/acs.jmedchem.9b02120

    138. [138]

      Caramelli, D.; Salley, D.; Henson, A.; Camarasa, G. A.; Sharabi, S.; Keenan, G.; Cronin, L. Nat. Commun. 2018, 9, 3406.  doi: 10.1038/s41467-018-05828-8

    139. [139]

      (a) Goodell, J. R.; McMullen, J. P.; Zaborenko, N.; Maloney, J. R.; Ho, C.-X.; Jensen, K. F.; Porco, J. A. Jr.; Beeler, A. B. J. Org. Chem. 2009, 74, 6169.
      (b) Heublein, N.; Moore, J. S.; Smith, C. D.; Jensen, K. F. RSV Adv. 2014, 4, 63627.
      (c) Weber, A.; von Roedern, E.; Stilz, H. U. J. Comb. Chem. 2005, 7, 178.

    140. [140]

      Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, A. P. In Advances in Neural Information Processing Systems 28, Neural Information Processing Systems 2015, Eds.: Cortes, C.; Lawrence, N.; Lee D.; Sugiyama, M.; Garnett, R., Neural Information Processing Systems, 2015, pp. 2224~2232.

    141. [141]

      Jankowski, N., Duch, W.; Gra̧bczewski, K. Meta-Learning in Computational Intelligence, Springer, Berlin, 2011.

    142. [142]

      Graves, A.; Wayne, G.; Danihelka, I. arXiv e-prints 2014, arXiv: 1410.5401.

    143. [143]

      Duan, Y.; Andrychowicz, M.; Stadie, B. C.; Ho, J.; Schneider, J.; Sutskever, I.; Abbeel, P.; Zaremba W. In Advances in Neural Information Processing Systems 30, Neural Information Processing Systems 2017, Eds.: Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Neural Information Processing Systems, 2017, pp. 1087~1098.

    144. [144]

      Lake, B. M.; Salakhutdinov, R.; Tenenbaum, J. B. Science 2015, 350, 1332.  doi: 10.1126/science.aab3050

    145. [145]

      Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. In Advances in Neural Information Processing Systems 29, Neural Information Processing Systems 2016, Eds.: Lee, D.; Sugiyama, M.; Luxburg, U.; Guyon, I.; Garnett, R., Neural Information Processing Systems, 2016, pp. 3630~3638.

    146. [146]

      Altae-Tran, H.; Ramsundar, B.; Pappu, A. S.; Pande, V. ACS Cent. Sci. 2017, 3, 283.  doi: 10.1021/acscentsci.6b00367

    147. [147]

      (a) Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. In Proceedings of The 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research Series 48, Eds.: Balcan, M. F.; Weinberger, K. Q., Proceedings of Machine Learning Research, New York, 2016, pp. 1842~1850.
      (b) Ha, H.; Hwang, U.; Hong, Y.; Yoon, S. arXiv e-prints 2018. arXiv: 1805.10768.

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    3. [3]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    6. [6]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    7. [7]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    8. [8]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    9. [9]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    10. [10]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    11. [11]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    12. [12]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    13. [13]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    14. [14]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    15. [15]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    16. [16]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    17. [17]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    18. [18]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    19. [19]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    20. [20]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

Metrics
  • PDF Downloads(414)
  • Abstract views(8456)
  • HTML views(3214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return