Application of Machine Learning in Organic Chemistry
- Corresponding author: Zhang Long, zhanglong@tsinghua.edu.cn Luo Sanzhong, luosz@tsinghua.edu.cn
Citation:
Liu Yidi, Yang Qi, Li Yao, Zhang Long, Luo Sanzhong. Application of Machine Learning in Organic Chemistry[J]. Chinese Journal of Organic Chemistry,
;2020, 40(11): 3812-3827.
doi:
10.6023/cjoc202006051
McCarthy, J.; Minsky, M. L.; Rochester, N.; Shannon, C. E. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955, AI Magazine, 2006, 27, 12.
Jordan, M. I.; Mitchell, T. M. Science 2015, 349, 255.
doi: 10.1126/science.aaa8415
Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; Hassabis, D. Nature 2016, 529, 484.
doi: 10.1038/nature16961
Skoraczyński, G.; Dittwald, P.; Miasojedow, B.; Szymkuć, S.; Gajewska, E. P.; Grzybowski, B. A.; Gambin, A. Sci. Rep. 2017, 7, 3582.
doi: 10.1038/s41598-017-02303-0
Samuel, A. L. IBM J. Res. Dev. 1959, 3, 210.
doi: 10.1147/rd.33.0210
Tenenbaum, J. B.; Kemp, C.; Griffiths, T. L.; Goodman, N. D. Science 2011, 331, 1279.
doi: 10.1126/science.1192788
(a) Rupp, M. Phys. Rev. Lett. 2012, 108, 058301.
(b) Müller, K.-R. J. Chem. Theory Comput. 2013, 9, 3404.
Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M. K.; Burke, K.; Müller, K.-R. Nat. Commun. 2017, 8, 872.
doi: 10.1038/s41467-017-00839-3
(a) Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.
(b) Segler, M. H. S.; Waller, M. P. Chem.-Eur. J. 2017, 23, 5966.
Granda, J. M.; Donina, L.; Dragone, V.; Long, D.-L.; Cronin, L. Nature 2018, 559, 377.
doi: 10.1038/s41586-018-0307-8
Warr, W. A. Mol. Inf. 2014, 33, 469.
doi: 10.1002/minf.201400052
Blum, L. C.; Reymond, J.-L. J. Am. Chem. Soc. 2009, 131, 8732.
doi: 10.1021/ja902302h
Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L. J. Chem. Inf. Model. 2012, 52, 2864.
doi: 10.1021/ci300415d
Delaney, J. S. J. Chem. Inf. Comput. Sci. 2004, 44, 1000.
doi: 10.1021/ci034243x
Mobley, D. L.; Guthrie, J. P. J. Comput.-Aided Mol. Des. 2014, 28, 711.
doi: 10.1007/s10822-014-9747-x
Sterling, T.; Irwin, J. J. J. Chem. Inf. Model. 2015, 55, 2324.
doi: 10.1021/acs.jcim.5b00559
(a) Akhondi, S. A.; Klenner, A. G.; Tyrchan, C.; Manchala, A. K.; Boppana, K.; Lowe, D.; Zimmermann, M.; Jagarlapudi, S. A. R. P.; Sayle, R.; Kors, J. A.; Muresan, S. PloS One 2014, 9, el07477.
(b) Southan, C. Drug Discovery Today: Technol. 2015, 14, 3.
(c) Lowe, D. M. PhD. Dissertation, University of Cambridge, Cambridge, 2012.
Manickam, Y.; Chaturvedi, R.; Babbar, P.; Malhotra, N.; Jain, V.; Sharma, A. Drug Discovery Today 2018, 23, 6.
(a) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Landrum, G. A. J. Chem. Inf. Model. 2015, 55, 39.
(b) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum, G. A. J. Med. Chem. 2016, 59, 4385.
Rahman, S. A.; Torrance, G.; Baldacci, L.; Cuesta, S. M.; Fenninger, F.; Gopal, N.; Choudhary, S.; May, J. W.; Holliday, G. L.; Steinbeck, C.; Thornton, J. M. Bioinformatics 2016, 32, 2065.
doi: 10.1093/bioinformatics/btw096
Cooper, T. W. J.; Campbell, I. B.; Macdonald, S. J. F. Angew. Chem., Int. Ed. 2010, 49, 8082.
doi: 10.1002/anie.201002238
Buitrago Santanilla, A.; Regalado, E. L.; Pereira, T.; Shevlin, M.; Bateman, K.; Campeau, L.-C.; Schneeweis, J.; Berritt, S.; Shi, Z.-C.; Nantermet, P.; Liu, Y.; Helmy, R.; Welch, C. J.; Vachal, P.; Davies, I. W.; Cernak, T.; Dreher, S. D. Science 2015, 347, 49.
doi: 10.1126/science.1259203
Tetko, I. V.; Engkvist, O.; Chen, H. Future Med. Chem. 2016, 8, 1801.
doi: 10.4155/fmc-2016-0163
ChemAxon http://chemaxon.com.
Landrum, G. RDKit: Open-source Cheminformatics, 2014, http://www.rdkit.org.
(a) Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. J. Chem. Inf. Comput. Sci. 2003, 43, 493.
(b) Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E. L. Curr. Pharm. Des. 2006, 12, 2111.
(c) Chemistry Development Kit, 2014, https://cdk.github.io/.
Durant, J. L.; Leland, B. A.; Henry, D. R.; Nourse, J. G. J. Chem. Inf. Comput. Sci. 2002, 42, 1273.
doi: 10.1021/ci010132r
(a) Cereto-Massague, A.; Jose Ojeda, M.; Valls, C.; Mulero, M.; Garcia-Vallve, S.; Pujadas, G. Methods 2015, 71, 58.
(b) Muegge, I.; Mukherjee, P. Expert Opin. Drug Discovery 2016, 11, 137.
(a) Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. J. Chem. Inf. Comput. Sci. 2004, 44, 170.
(b) Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. J. Chem. Inf. Comput. Sci. 2004, 44, 1708.
Morgan, H. L. J. Chem. Doc. 1965, 5, 107.
doi: 10.1021/c160017a018
Rogers, D.; Hahn, M. J. Chem. Inf. Model. 2010, 50, 742.
doi: 10.1021/ci100050t
O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. J. Cheminf. 2011, 3, 33.
doi: 10.1186/1758-2946-3-33
Indigo-GGA Software Services 2014. https://github.com/ggasoft-ware/indigo.
Weininger, D. J. Chem. Inf. Comput. Sci. 1988, 28, 31.
doi: 10.1021/ci00057a005
Heller, S.; McNaught, A.; Stein, S.; Tchekhovskoi, D.; Pletnev, I. J. Cheminf. 2013, 5, 7.
doi: 10.1186/1758-2946-5-7
Jeliazkova, N.; Kochev, N. Mol. Inf. 2011, 30, 707.
doi: 10.1002/minf.201100028
Raymond, J. W.; Willett, P. J. Comput.-Aided Mol. Des. 2002, 16, 521.
doi: 10.1023/A:1021271615909
Rupp, M.; Tkatchenko, A.; Muller, K. R.; von Lilienfeld, O. A. Phys. Rev. Lett. 2012, 108, 058301.
doi: 10.1103/PhysRevLett.108.058301
(a) Hochuli, J.; Helbling, A.; Skaist, T.; Ragoza, M.; Koes, D. R. J. Mol. Graphics Modell. 2018, 84, 96.
(b) Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D. R. J. Chem. Inf. Model. 2017, 57, 942.
Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631.
doi: 10.1126/science.aau5631
(a) Sutton, R. S. Mach. Learn. 1988, 3, 9.
(b) François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M. G.; Pineau, J. Found. Trends Mach. Learn. 2018, 11, 219.
(a) Koski, T.; Noble, J. Mathematica Applicanda (Matematyka Stosowana) 2012, 40, 51.
(b) Spiegelhalter, D. J. J. R. Statist. Soc. C 1998, 47, 115.
Quinlan, J. R. Mach. Learn. 1986, 1, 81.
(a) Domingos, P.; Pazzani, M. Mach. Learn. 1997, 29, 103.
(b) Webb, G. I.; Boughton, J. R.; Wang, Z. Mach. Learn. 2005, 58, 5.
(c) Maron, M. E. J. ACM 1961, 8, 404.
Cortes, C.; Vapnik, V. Mach. Learn. 1995, 20, 273.
(a) Achtert, E.; Böhm, C.; Kriegel, H.-P.; Kröger, P.; Müller-Gorman, I.; Zimek, A. In Finding Hierarchies of Subspace Clusters, Knowledge Discovery in Databases: PKDD 2006 Series 4213, Springer Berlin Heidelberg, Heidelberg, 2006, pp. 446~453.
(b) Kriegel, H.-P.; Kröger, P.; Zimek, A. WIREs Data Mining Knowl. Discov. 2012, 2, 351.
(c) Sibson, R. Comput. J. 1973, 16, 30.
(d) Banerjee, A.; Dave, R. N. In Validating Clusters using the Hopkins Statistic, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No. 04CH37542), IEEE, Budapest, 2004, pp. 149~153.
(e) Estivill-Castro, V. SIGKDD Explor. Newsl. 2002, 4, 65.
(a) Breiman, L. Mach. Learn. 2001, 45, 5.
(b) Ho, T. K. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832.
Zhou, Z. H. Machine Learning, Tsinghua University Press, Beijing, 2016 (in Chinese).
Pedregosa, F.; Varoquaux, G.; Gramfort, V.; Michel, B.; Thirion, O.; Grisel, M.; Blondel, P.; Prettenhofer, R.; Weiss, V.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. J. Mach. Learn. Res. 2011, 12, 2825.
(a) Maass, W. Neural Net. 1997, 10, 1659.
(b) Wang, W.; Pedretti, G.; Milo, V.; Carboni, R.; Calderoni, A.; Ramaswamy, N.; Spinelli, A. S.; Ielmini, D. Sci. Adv. 2018, 4, eaat4752.
(c) Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S. R.; Masquelier, T.; Maida, A. Neural Netw. 2019, 111, 47.
McCulloch, W. S.; Pitts, W. Bull Math. Biophys. 1943, 5, 115.
doi: 10.1007/BF02478259
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. J. Mach. Learn. Res. 2014, 15, 1929.
Li, W.; Matthew, Z.; Sixin, Z.; Yann Le, C.; Rob, F. In Proceedings of the 30th International Conference on Machine Learning, Proceedings of Machine Learning Research Series 28, Eds.: Dasgupta, S.; McAllester, D., Proceedings of Machine Learning Research, Atlanta, 2013, pp. 1058~1066.
Nair, V.; Hinton, G. E. In International Conference on Machine Learning, Proceedings of the 27th International Conference on Machine Learning, International Conference on Machine Learning Series 27, International Conference on Machine Learning, Haifa, 2010.
(a) Zhou, J.; Cui, G.; Zhang, Z. Y.; Yang, C.; Liu, Z. Y.; Wang, L. F.; Li, C. C.; Sun, M. arXiv e-prints 2018, arXiv: 1812.08434.
(b) Zhang, Z. W.; Cui, P.; Zhu, W. W. IEEE Trans. Knowl. Data Eng. 2020, doi: 10.1109/TKDE.2020.2981333.
(a) Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. In Advances in Neural Information Processing Systems 28, Neural Information Processing Systems 2015, Eds.: Cortes, C.; Lawrence, N.; Lee D.; Sugiyama, M.; Garnett, R., Neural Information Processing Systems, 2015, pp. 2215~2223.
(b) Coley, C. W.; Jin, W.; Rogers, L.; Jamison, T. F.; Jaakkola, T. S.; Green, W. H.; Barzilay, R.; Jensen, K. F. Chem. Sci. 2019, 10, 370.
Mitchell, J. B. O. Wires Comput. Mol. Sci. 2014, 4, 468.
doi: 10.1002/wcms.1183
Corey, E. J.; Wipke, W. T. Science 1969, 166, 178.
doi: 10.1126/science.166.3902.178
Muratov, E. N.; Bajorath, J.; Sheridan, R. P.; Tetko, I. V.; Filimonov, D.; Poroikov, V.; Oprea, T. I.; Baskin, I. I.; Varnek, A.; Roitberg, A.; Isayev, O.; Curtalolo, S.; Fourches, D.; Cohen, Y.; Aspuru-Guzik, A.; Winkler, D. A.; Agrafiotis, D.; Cherkasov, A.; Tropsha, A. Chem. Soc. Rev. 2020, 49, 3525.
doi: 10.1039/D0CS00098A
Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. J. Chem. Inf. Model. 2015, 55, 263.
doi: 10.1021/ci500747n
Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. Front. Environ. Sci. 2016, 3, 80.
(a) Ramsundar, B.; Liu, B.; Wu, Z.; Verras, A.; Tudor, M.; Sheridan, R. P.; Pande, V. J. Chem. Inf. Model. 2017, 57, 2068.
(b) Koutsoukas, A.; Monaghan, K. J.; Li, X.; Huan, J. J. Cheminf. 2017, 9, 42.
(c) Lenselink, E. B.; ten Dijke, N.; Bongers, B.; Papadatos, G.; van Vlijmen, H. W. T.; Kowalczyk, W.; Ijzerman, A. P.; van Westen, G. J. P. J. Cheminf. 2017, 9, 45.
(a) Subramanian, G.; Ramsundar, B.; Pande, V.; Denny, R. A. J. Chem. Inf. Model. 2016, 56, 1936.
(b) Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Mol. Pharm. 2016, 13, 2524.
(c) Lusci, A.; Pollastri, G.; Baldi, P. J. Chem. Inf. Model. 2013, 53, 1563.
(d) Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. J. Chem. Inf. Model. 2015, 55, 208.
Ryu, S.; Kwon, Y.; Kim, W. Y. Chem. Sci. 2019, 10, 8438.
doi: 10.1039/C9SC01992H
Gaulton, A.; Hersey, A.; Nowotka, M.; Patrícia Bento, A.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L. J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M. P.; Overington, J. P.; Papadatos, G.; Smit, I.; Leach, A. L. Nucleic Acids Res. 2017, 45, 945.
doi: 10.1093/nar/gkw1074
(a) Fraczkiewicz, R.; Lobell, M.; Göller, A. H.; Krenz, U.; Schoenneis, R.; Clark, R. D.; Hillisch. A. J. Chem. Inf. Model. 2015, 55, 389.
(b) Fraczkiewicz, R.; Lobell, M.; Göller, A. H.; Krenz, U.; Schoenneis, R.; Clark, R. D.; Hillisch, A. J. Chem. Inf. Model. 2015, 55, 389.
Roszak, R.; Beker, W.; Molga, K.; Grzybowski, B. A. J. Am. Chem. Soc. 2019, 141, 17142.
doi: 10.1021/jacs.9b05895
Yang, Q.; Li, Y.; Yang, J.-D.; Liu, Y. D.; Zhang, L.; Luo, S. Z.; Cheng, J.-P. Angew. Chem., Int. Ed. 2020, 59, 19282.
doi: 10.1002/anie.202008528
Yang, J.-D.; Xue, X.-S.; Ji, P.; Li, X.; Cheng, J.-P. Internet Bond-energy Databank (pKa and BDE): iBonD Home Page, http://ibond.chem.tsinghua.edu.cn or http://ibond.nankai.edu.cn.
Hall, L. H. J. Chem. Inf. Comput. Sci. 1995, 35, 1039.
doi: 10.1021/ci00028a014
Feng, C.; Sharman, E.; Ye, S.; Luo, Y.; Jiang, J. Sci. China:Chem. 2019, 62, 1698.
doi: 10.1007/s11426-019-9619-8
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Proceedings of the 34th International Conference on Machine Learning, In Proceedings of Machine Learning Research Series 70, Eds.: Precup, D.; Teh, Y. W., Proceedings of Machine Learning Research, Sydney, 2017, pp. 1263~1272.
Ertl, P.; Lewis, R.; Martin, E.; Polyakov, V. arXiv e-prints 2017, arXiv: 1712.07449.
Liang, L.; Deng, C. L.; Zhang, Y. M.; Hua, Y.; Liu, H. C.; Lu, T.; Chen, Y. D. Prog. Pharm. Sci. 2020, 44, 18(in Chinese).
Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. Mol. Pharm. 2017, 14, 3098.
doi: 10.1021/acs.molpharmaceut.7b00346
Goodfellow, I. arXiv e-prints 2016, arXiv: 1701.00160.
Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.; Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy, D. A.; Kuznetsov, M. D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R. R.; Zhebrak, A.; Minaeva, L. I.; Zagribelnyy, B. A.; Lee, L. H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A. Nat Biotechnol. 2019, 37, 1038.
doi: 10.1038/s41587-019-0224-x
Yu, L. T.; Zhang, W. N.; Wang, J.; Yu, Y. arXiv e-prints 2016, arXiv: 1609.05473.
Jaques, N.; Gu, S.; Bahdanau, D.; Hernández-Lobato, J. M.; Turner, R. E.; Eck, D. arXiv e-prints 2016, arXiv: 1611.02796.
Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525.
doi: 10.1021/cr60274a001
Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.; Hopkins, A. L. Nat. Chem. 2012, 4, 90.
doi: 10.1038/nchem.1243
Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. J. Cheminf. 2017, 9, 48.
doi: 10.1186/s13321-017-0235-x
Benhenda, M. arXiv e-prints 2017, arXiv: 1708.08227.
(a) Metz, L.; Poole, B.; Pfau, D.; Sohl-Dickstein, J. arXiv e-prints 2016, arXiv: 1611.02163.
(b) Unterthiner, T.; Nessler, B.; Seward, C.; Klambauer, G.; Heusel, M.; Ramsauer, H.; Hochreiter, S. arXiv e-prints 2017, arXiv: 1708.08819.
Corey, E. J.; Wipke, W. T.; Cramer, R. D.; Howe, W. J. J. Am. Chem. Soc. 1972, 94, 431.
doi: 10.1021/ja00757a021
Hendrickson, J. B. Recl. Trav. Chim. Pays-Bas. 1992, 111, 323.
doi: 10.1002/recl.19921110611
(a) Todd, M. H. Chem. Soc. Rev. 2005, 34, 247.
(b) Szymkuć, S.; Gajewska, E. P.; Klucznik, T.; Molga, K.; Dittwald, P.; Startek, M.; Bajczyk, M.; Grzybowski, B. A. Angew. Chem., Int. Ed. 2016, 55, 5904.
de Almeida, A. F.; Moreira, R.; Rodrigues, T. Nat. Rev. Chem. 2019, 3, 589.
doi: 10.1038/s41570-019-0124-0
Kayala, M. A.; Azencott, C.-A.; Chen, J. H.; Baldi, P. J. Chem. Inf. Model. 2011, 51, 2209.
doi: 10.1021/ci200207y
Kayala, M. A.; Baldi, P. J. Chem. Inf. Model. 2012, 52, 2526.
doi: 10.1021/ci3003039
Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C. A.; Bekas, C.; Lee, A. A. ACS Cent. Sci. 2019, 5, 1572.
doi: 10.1021/acscentsci.9b00576
McDaniel, D. H.; Brown, H. C. J. Org. Chem. 1958, 23, 420.
doi: 10.1021/jo01097a026
(a) Friedman, M.; Wall, J. S. J. Am. Chem. Soc. 1964, 86, 3735.
(b) Friedman, M.; Cavins, J. F.; Wall, J. S. J. Am. Chem. Soc. 1965, 87, 3672.
(c) Friedman, M.; Wall, J. S. J. Org. Chem. 1966, 31, 2888.
Toropov, A. A.; Kudyshkin, V. O.; Voropaeva, N. L.; Ruban, I. N.; Rashidova, S. S. J. Struct. Chem. 2004, 45, 945.
doi: 10.1007/s10947-005-0084-8
Yu, X.; Yi, B.; Wang, X. Eur. Polym. J. 2008, 44, 3997.
doi: 10.1016/j.eurpolymj.2008.09.028
Morrill, J. A.; Biggs, J. H.; Bowman, C. N.; Stansbury, J. W. J. Mol. Graphics Modell. 2011, 29, 763.
doi: 10.1016/j.jmgm.2010.12.009
Schwöbel, J. A. H.; Wondrousch, D.; Koleva, Y. K.; Madden, J. C.; Cronin, M. T. D.; Schüürmann, G. Chem. Res. Toxicol. 2010, 23, 1576.
doi: 10.1021/tx100172x
Wondrousch, D.; Böhme, A.; Thaens, D.; Ost, N.; Schüürmann, G. J. Phys. Chem. Lett. 2010, 1, 1605.
doi: 10.1021/jz100247x
Halberstam, N. M.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Mendeleev Commun. 2002, 12, 185.
doi: 10.1070/MC2002v012n05ABEH001620
Harper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem. 2012, 4, 366.
doi: 10.1038/nchem.1297
Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186.
doi: 10.1126/science.aar5169
Singh, S.; Pareek, M.; Changotra, A.; Banerjee, S.; Bhaskararao, B.; Balamurugan, P.; Sunoj, R. B. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 1339.
doi: 10.1073/pnas.1916392117
Li, X.; Zhang, S.-Q.; Xu, L.-C.; Hong. X. Angew. Chem., Int. Ed. 2020, 59, 13253.
doi: 10.1002/anie.202000959
Sandfort, F.; Strieth-Kalthoff, F.; Kuhnemund, M.; Beecks, C.; Glorius, F. Chem 2020, 6, 1.
doi: 10.1016/j.chempr.2019.12.023
Lin, A. I.; Madzhidov, T. I.; Klimchuk, O.; Nugmanov, R. I.; Antipin, I. S.; Varnek, A. J. Chem. Inf. Model. 2016, 56, 2140.
doi: 10.1021/acs.jcim.6b00319
Marcou, G.; Aires, de Sousa. J.; Latino, D. A. R. S.; de Luca, A.; Horvath, D.; Rietsch, V.; Varnek, A. J. Chem Inf. Model. 2015, 55, 239.
doi: 10.1021/ci500698a
Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.; Jensen, K. F. ACS Cent. Sci. 2018, 4, 1465.
doi: 10.1021/acscentsci.8b00357
Struebing, H.; Ganase, Z.; Karamertzanis, P.; Siougkrou, E.; Haycock, P.; Piccione, P. M.; Armstrong, A.; Galindo, A.; Adjiman, C. S. Nat. Chem. 2013, 5, 952.
doi: 10.1038/nchem.1755
Häse, F.; Roch, L. M.; Kreisbeck, C.; Aspuru-Guzik, A. ACS Cent. Sci. 2018, 4, 1134.
doi: 10.1021/acscentsci.8b00307
(a) Baskin, I. I.; Madzhidov, T. I.; Antipin, I. S.; Varnek, A. A. Russ. Chem. Rev. 2017, 86, 1127.
(b) Cook, A.; Johnson, A. P.; Law, J.; Mirzazadeh, M.; Ravitz, O.; Simon, A. Science 2012, 2, 79.
(c) Zefirov, N. S.; Gordeeva, E. V. Russ. Chem. Rev. 1987, 56, 1002.
Coley, C. W.; Green, W. H.; Jensen, K. F. Acc. Chem. Res. 2018, 51, 1281.
doi: 10.1021/acs.accounts.8b00087
Varnek, V.; Baskin, I. I. In Systems Medicine, Vol. 2, Eds.: Wolkenhauer, O., Academic Press, Oxford, 2021, pp. 190~197.
Law, J.; Zsoldos, Z.; Simon, A.; Reid, D.; Liu, Y.; Khew, S. Y.; Johnson, A. P.; Major, S.; Wade, R. A.; Ando, H. Y. J. Chem. Inf. Model. 2019, 49, 593.
Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F. ACS Cent. Sci. 2017, 3, 1237.
doi: 10.1021/acscentsci.7b00355
Liu, B.; Ramsundar, B.; Kawthekar, P.; Shi, J.; Gomes, J.; Luu Nguyen, Q.; Ho, S.; Sloane, J.; Wender, P.; Pande, V. ACS Cent. Sci. 2017, 3, 1103.
doi: 10.1021/acscentsci.7b00303
Lin, L. J.; Xu, Y. J.; Pei, J. F.; Lai, L, H. Chem. Sci. 2020, 11, 3355.
doi: 10.1039/C9SC03666K
Schwaller, P.; Petraglia, R.; Zullo, V.; Nair, V. H.; Haeuselmann, R. A.; Pisoni, R.; Bekas, C.; Iuliano, A.; Laino, T. Chem. Sci. 2020, 11, 3316.
doi: 10.1039/C9SC05704H
(a) Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.
(b) Satoh, H.; Funatsu, K. J. Chem. Inf. Comput. Sci. 1995, 35, 34.
Schwaller, P.; Vaucher, A.; Nair, V. H.; Laino, T.; Reymond, J.-L. ChemRxiv Preprint 2019, https://doi.org/10.26434/chemrxiv.9897365.v2.
doi: 10.26434/chemrxiv.9897365.v2
(a) Trobe, M.; Burke, M. D. Angew. Chem., Int. Ed. 2018, 57, 4192.
(b) Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M. Angew. Chem., Int. Ed. 2015, 54, 3449.
Sans, V.; Cronin, L. Chem. Soc. Rev. 2016, 45, 2032.
doi: 10.1039/C5CS00793C
Houben, C.; Lapkin, A. A. Curr. Opin. Chem. Eng. 2015, 9, 1.
doi: 10.1016/j.coche.2015.07.001
Perera, D.; Tucker, J. W.; Brahmbhatt, S.; Helal, C. J.; Chong, A.; Farrell, W.; Richardson, P.; Sach, N. W. Science 2018, 359, 429.
doi: 10.1126/science.aap9112
Cortés-Borda, D.; Wimmer, E.; Gouilleux, B.; Barré, E.; Oger, N.; Goulamaly, L.; Peault, L.; Charrier, B.; Truchet, C.; Giraudeau, P.; Rodriguez-Zubiri, M.; Le Grognec, E.; Felpin, F.-X. J. Org. Chem. 2018, 83, 14286.
doi: 10.1021/acs.joc.8b01821
Steiner, S.; Wolf, J.; Glatze, S.; Andreou, A.; Granda, J. M.; Keenan, G.; Hinkley, T.; Aragon-Camarasa, G.; Kitson, P. J.; Angelone, D.; Cronin, L. Science 2019, 363, eaav2211.
doi: 10.1126/science.aav2211
Coley, C. W.; Thomas D. A.; Lummiss, J. A. M.; Jaworski, J. N.; Breen, C. P.; Schultz, V.; Hart, T.; Fishman, J. S.; Rogers, L.; Gao, H.; Hicklin, R. W.; Plehiers, P. P.; Byington, J.; Piotti, J. S.; Green, W. H.; Hart, A. J.; Jamison, T. F.; Jensen, K, F. Science 2019, 365, eaax1566.
doi: 10.1126/science.aax1566
Chatterjee, S.; Guidi, M.; Seeberger, P. H.; Gilmore. K. Nature 2020, 579, 379.
doi: 10.1038/s41586-020-2083-5
(a) Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. J. Med. Chem. 2012, 55, 6582.
(b) Sun, J.; Jeliazkova, N.; Chupakhin, V.; Golib-Dzib, J.-F.; Engkvist, O.; Carlsson, L.; Wegner, J.; Ceulemans, H.; Georgiev, I.; Jeliazkov, V.; Kochev, N.; Ashby, T. J.; Chen, H. J. Cheminf. 2017, 9, 17.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; Li, F.-F. Int. J. Comput. Vision 2015, 115, 211.
doi: 10.1007/s11263-015-0816-y
Miller, G. A. Commun. ACM 1995, 38, 39.
Wu, Z.; Ramsundar, B.; Feinberg, Evan N.; Gomes, J.; Geniesse, C.; Pappu, A. S.; Leswing, K.; Pande, V. Chem. Sci. 2018, 9, 513.
doi: 10.1039/C7SC02664A
Kitchin, J. R. Nat. Cat. 2018, 1, 230.
doi: 10.1038/s41929-018-0056-y
Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.
doi: 10.1038/nature17439
Struble, T. J.; Alvarez, J. C.; Brown, S. P.; Chytil, M.; Cisar, J.; DesJarlais, R. L.; Engkvist, O, ; Frank, S. A.; Greve, D. R.; Griffin, D. J.; Hou, X. J.; Johannes, J. W.; Kreatsoulas, C.; Lahue, B.; Mathea, M.; Mogk, G.; Nicolaou, C. A.; Palmer, A. D.; Price, D. J.; Robinson, R. I.; Salentin, S.; Xing, L.; Jaakkola, T.; Green, W. H.; Barzilay, R.; Coley, C. W.; Jensen, K. F. J. Med. Chem. 2020, 63, 8667.
doi: 10.1021/acs.jmedchem.9b02120
Caramelli, D.; Salley, D.; Henson, A.; Camarasa, G. A.; Sharabi, S.; Keenan, G.; Cronin, L. Nat. Commun. 2018, 9, 3406.
doi: 10.1038/s41467-018-05828-8
(a) Goodell, J. R.; McMullen, J. P.; Zaborenko, N.; Maloney, J. R.; Ho, C.-X.; Jensen, K. F.; Porco, J. A. Jr.; Beeler, A. B. J. Org. Chem. 2009, 74, 6169.
(b) Heublein, N.; Moore, J. S.; Smith, C. D.; Jensen, K. F. RSV Adv. 2014, 4, 63627.
(c) Weber, A.; von Roedern, E.; Stilz, H. U. J. Comb. Chem. 2005, 7, 178.
Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, A. P. In Advances in Neural Information Processing Systems 28, Neural Information Processing Systems 2015, Eds.: Cortes, C.; Lawrence, N.; Lee D.; Sugiyama, M.; Garnett, R., Neural Information Processing Systems, 2015, pp. 2224~2232.
Jankowski, N., Duch, W.; Gra̧bczewski, K. Meta-Learning in Computational Intelligence, Springer, Berlin, 2011.
Graves, A.; Wayne, G.; Danihelka, I. arXiv e-prints 2014, arXiv: 1410.5401.
Duan, Y.; Andrychowicz, M.; Stadie, B. C.; Ho, J.; Schneider, J.; Sutskever, I.; Abbeel, P.; Zaremba W. In Advances in Neural Information Processing Systems 30, Neural Information Processing Systems 2017, Eds.: Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Neural Information Processing Systems, 2017, pp. 1087~1098.
Lake, B. M.; Salakhutdinov, R.; Tenenbaum, J. B. Science 2015, 350, 1332.
doi: 10.1126/science.aab3050
Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. In Advances in Neural Information Processing Systems 29, Neural Information Processing Systems 2016, Eds.: Lee, D.; Sugiyama, M.; Luxburg, U.; Guyon, I.; Garnett, R., Neural Information Processing Systems, 2016, pp. 3630~3638.
Altae-Tran, H.; Ramsundar, B.; Pappu, A. S.; Pande, V. ACS Cent. Sci. 2017, 3, 283.
doi: 10.1021/acscentsci.6b00367
(a) Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. In Proceedings of The 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research Series 48, Eds.: Balcan, M. F.; Weinberger, K. Q., Proceedings of Machine Learning Research, New York, 2016, pp. 1842~1850.
(b) Ha, H.; Hwang, U.; Hong, Y.; Yoon, S. arXiv e-prints 2018. arXiv: 1805.10768.
Heng Zhang , Ying Ma , Shiling Yuan . Machine Learning-based Prediction of Antifouling Performance in Polymer Materials: An Integrated Molecular Simulation Experiment. University Chemistry, 2026, 41(1): 346-353. doi: 10.12461/PKU.DXHX202506015
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-0. doi: 10.3866/PKU.WHXB202309041
Jia Zhou . Design and Practice of a Comprehensive Computational Chemistry Experiment Based on High-Throughput Computation and Machine Learning. University Chemistry, 2025, 40(9): 69-75. doi: 10.12461/PKU.DXHX202411067
Jingjie Rao , Wenwen Cai , Jiahui Zhao , Xu Yang , Ziyan Yan , Tianjin Zhang , Hang Zhang . Digital Exploration of Analytical Chemistry Experiments in the Context of Machine Learning and Big Data: A Case Study on Water Hardness Measurement. University Chemistry, 2026, 41(1): 276-288. doi: 10.12461/PKU.DXHX202504104
Jianqiang Zheng , Yongbin Huang , Wencan Ming , Yingju Liu . Intelligent Reaction Optimization: Synthesis of Acetylsalicylic Acid Driven by Deep Learning and Optimization Algorithms. University Chemistry, 2025, 40(9): 87-98. doi: 10.12461/PKU.DXHX202411062
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
Songmei Ma , Ying Zhang , Gang Liu , Wenlong Xu . Comprehensive Experiment Teaching Exploration and Practice in Polymeric Materials Integrating Research-Driven Learning, Creativity-Enhanced Competency, and Science-Education Synergy: A Case Study of Machine Learning-Assisted Intelligent Handwriting Recognition System. University Chemistry, 2026, 41(1): 289-297. doi: 10.12461/PKU.DXHX202509083
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
Zuoyong Li , Haoxiang Tu , Mingwei Ding , Meijun Liu , Ting Yang . Innovative Teaching Reform Study on the Synthesis of Silver Nanoparticles Based on Machine Learning and Microfluidic Technology. University Chemistry, 2026, 41(1): 64-75. doi: 10.12461/PKU.DXHX202505088
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
Jiaqi Chen , Liang Chen , Xiaocui Wei , Yankai Wang , Yahui Chang , Xinghao Ji , Haoyu Yang , Yue Sun , Yawen Wang , Xiufeng Shi , Xu Wu . Digital Empowerment for Foundational Excellence: A Digitally Enhanced Coordination Titration Experiment of Heating Pack Component Analysis. University Chemistry, 2026, 41(1): 382-393. doi: 10.12461/PKU.DXHX202506008
Weigang Zhu , Jianfeng Wang , Qiang Qi , Jing Li , Zhicheng Zhang , Xi Yu . Curriculum Development for Cheminformatics and AI-Driven Chemistry Theory toward an Intelligent Era. University Chemistry, 2025, 40(9): 34-42. doi: 10.12461/PKU.DXHX202412002
Yueming Zhou , Xin Qiu , Xin Zhou , Xiaotian Wan , Mofan Zhang , Feng Li , Xinxin Shao , Peng Ding , Xizhen Liang . Intelligent Visualization of Potassium Dichromate Reflux Method for Determination of Chemical Oxygen Demand. University Chemistry, 2026, 41(1): 85-94. doi: 10.12461/PKU.DXHX202506021
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Lingyu Chang , Yanfang Lang , Yuyan Zhu , Jie Wang , Ying Guo , Die Wang , Peng Ding , Yueming Zhou , Zhixiang Gong , Shujuan Liu . Machine Learning-Optimized Microcolumn Ion Exchange Chromatography for Trace Arsenic Determination. University Chemistry, 2026, 41(1): 76-84. doi: 10.12461/PKU.DXHX202506023
Zhican Lu , Junyu Li , Zijun Huang , Ziyi Zeng , Chi Huang , Chuqing Gong , Yalan Zhong . Digital Experimental Design of Decomposition of Ammonium Perchlorate Catalyzed by MOFs. University Chemistry, 2026, 41(1): 133-143. doi: 10.12461/PKU.DXHX202506017
Yuan Chun , Yongmei Liu , Fuping Tian , Hong Yuan , Shu'e Song , Wanchun Zhu , Yunchao Li , Zhongyun Wu , Xiaokui Wang , Yunshan Bai , Li Wang , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053
Xiaodong Chen , Yumin Zhang . An Improved Simulated Annealing Algorithm for Predicting the Molecular Formulas of Organic Compounds. University Chemistry, 2025, 40(9): 19-24. doi: 10.12461/PKU.DXHX202408095
(a) Workflow of synthetic planning software. (b) mobile chemical robot platform[129]. Copyright 2019 American Association for the Advancement of Science