Citation: Liu Yidi, Yang Qi, Li Yao, Zhang Long, Luo Sanzhong. Application of Machine Learning in Organic Chemistry[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3812-3827. doi: 10.6023/cjoc202006051 shu

Application of Machine Learning in Organic Chemistry

  • Corresponding author: Zhang Long, zhanglong@tsinghua.edu.cn Luo Sanzhong, luosz@tsinghua.edu.cn
  • Received Date: 24 June 2020
    Revised Date: 22 July 2020
    Available Online: 5 August 2020

    Fund Project: the Natural Science Foundation of China 21933008the National Science & Technology Fundamental Resource Investigation Program of China 2018FY201200the Natural Science Foundation of China 22031006Project supported by the National Science & Technology Fundamental Resource Investigation Program of China (No. 2018FY201200), the Tsinghua University Initiative Scientific Research Program (No. 2019Z07L01005) and the Natural Science Foundation of China (Nos. 22031006, 21672217, 21933008)the Natural Science Foundation of China 21672217the Tsinghua University Initiative Scientific Research Program 2019Z07L01005

Figures(14)

  • Driven by nowadays' computing power, big data technology as well as learning algorithm, artificial intelligence (AI) has gained trenmendous attentions and become a transformative approach in many research areas. One of the most extensively explored AI approaches in chemistry is (deep) machine learning, which provides new twists in the fields of organic chemistry. The workflow of machine learning (ML) study in organic chemistry is briefly introduced. Meanwhile, the application of ML in the accurate prediction of chemical properties, molecular de novo design, chemical reaction prediction, retrosynthetic analysis and artificial intelligence synthetic machine are also summarized. In the end, the current challenges in this field are analyzed and discussed.
  • 加载中
    1. [1]

      McCarthy, J.; Minsky, M. L.; Rochester, N.; Shannon, C. E. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955, AI Magazine, 2006, 27, 12.

    2. [2]

      Jordan, M. I.; Mitchell, T. M. Science 2015, 349, 255.  doi: 10.1126/science.aaa8415

    3. [3]

      Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; Hassabis, D. Nature 2016, 529, 484.  doi: 10.1038/nature16961

    4. [4]

      Skoraczyński, G.; Dittwald, P.; Miasojedow, B.; Szymkuć, S.; Gajewska, E. P.; Grzybowski, B. A.; Gambin, A. Sci. Rep. 2017, 7, 3582.  doi: 10.1038/s41598-017-02303-0

    5. [5]

      Samuel, A. L. IBM J. Res. Dev. 1959, 3, 210.  doi: 10.1147/rd.33.0210

    6. [6]

      Tenenbaum, J. B.; Kemp, C.; Griffiths, T. L.; Goodman, N. D. Science 2011, 331, 1279.  doi: 10.1126/science.1192788

    7. [7]

      (a) Rupp, M. Phys. Rev. Lett. 2012, 108, 058301.
      (b) Müller, K.-R. J. Chem. Theory Comput. 2013, 9, 3404.

    8. [8]

      Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M. K.; Burke, K.; Müller, K.-R. Nat. Commun. 2017, 8, 872.  doi: 10.1038/s41467-017-00839-3

    9. [9]

    10. [10]

    11. [11]

      (a) Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.
      (b) Segler, M. H. S.; Waller, M. P. Chem.-Eur. J. 2017, 23, 5966.

    12. [12]

      Granda, J. M.; Donina, L.; Dragone, V.; Long, D.-L.; Cronin, L. Nature 2018, 559, 377.  doi: 10.1038/s41586-018-0307-8

    13. [13]

      Warr, W. A. Mol. Inf. 2014, 33, 469.  doi: 10.1002/minf.201400052

    14. [14]

      Blum, L. C.; Reymond, J.-L. J. Am. Chem. Soc. 2009, 131, 8732.  doi: 10.1021/ja902302h

    15. [15]

      Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L. J. Chem. Inf. Model. 2012, 52, 2864.  doi: 10.1021/ci300415d

    16. [16]

      Delaney, J. S. J. Chem. Inf. Comput. Sci. 2004, 44, 1000.  doi: 10.1021/ci034243x

    17. [17]

      Mobley, D. L.; Guthrie, J. P. J. Comput.-Aided Mol. Des. 2014, 28, 711.  doi: 10.1007/s10822-014-9747-x

    18. [18]

      Sterling, T.; Irwin, J. J. J. Chem. Inf. Model. 2015, 55, 2324.  doi: 10.1021/acs.jcim.5b00559

    19. [19]

      (a) Akhondi, S. A.; Klenner, A. G.; Tyrchan, C.; Manchala, A. K.; Boppana, K.; Lowe, D.; Zimmermann, M.; Jagarlapudi, S. A. R. P.; Sayle, R.; Kors, J. A.; Muresan, S. PloS One 2014, 9, el07477.
      (b) Southan, C. Drug Discovery Today: Technol. 2015, 14, 3.
      (c) Lowe, D. M. PhD. Dissertation, University of Cambridge, Cambridge, 2012.

    20. [20]

      Manickam, Y.; Chaturvedi, R.; Babbar, P.; Malhotra, N.; Jain, V.; Sharma, A. Drug Discovery Today 2018, 23, 6.

    21. [21]

      (a) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Landrum, G. A. J. Chem. Inf. Model. 2015, 55, 39.
      (b) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum, G. A. J. Med. Chem. 2016, 59, 4385.

    22. [22]

      Rahman, S. A.; Torrance, G.; Baldacci, L.; Cuesta, S. M.; Fenninger, F.; Gopal, N.; Choudhary, S.; May, J. W.; Holliday, G. L.; Steinbeck, C.; Thornton, J. M. Bioinformatics 2016, 32, 2065.  doi: 10.1093/bioinformatics/btw096

    23. [23]

      Cooper, T. W. J.; Campbell, I. B.; Macdonald, S. J. F. Angew. Chem., Int. Ed. 2010, 49, 8082.  doi: 10.1002/anie.201002238

    24. [24]

      Buitrago Santanilla, A.; Regalado, E. L.; Pereira, T.; Shevlin, M.; Bateman, K.; Campeau, L.-C.; Schneeweis, J.; Berritt, S.; Shi, Z.-C.; Nantermet, P.; Liu, Y.; Helmy, R.; Welch, C. J.; Vachal, P.; Davies, I. W.; Cernak, T.; Dreher, S. D. Science 2015, 347, 49.  doi: 10.1126/science.1259203

    25. [25]

      Tetko, I. V.; Engkvist, O.; Chen, H. Future Med. Chem. 2016, 8, 1801.  doi: 10.4155/fmc-2016-0163

    26. [26]

      ChemAxon http://chemaxon.com.

    27. [27]

      Landrum, G. RDKit: Open-source Cheminformatics, 2014, http://www.rdkit.org.

    28. [28]

      (a) Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. J. Chem. Inf. Comput. Sci. 2003, 43, 493.
      (b) Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E. L. Curr. Pharm. Des. 2006, 12, 2111.
      (c) Chemistry Development Kit, 2014, https://cdk.github.io/.

    29. [29]

      Durant, J. L.; Leland, B. A.; Henry, D. R.; Nourse, J. G. J. Chem. Inf. Comput. Sci. 2002, 42, 1273.  doi: 10.1021/ci010132r

    30. [30]

      (a) Cereto-Massague, A.; Jose Ojeda, M.; Valls, C.; Mulero, M.; Garcia-Vallve, S.; Pujadas, G. Methods 2015, 71, 58.
      (b) Muegge, I.; Mukherjee, P. Expert Opin. Drug Discovery 2016, 11, 137.

    31. [31]

      (a) Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. J. Chem. Inf. Comput. Sci. 2004, 44, 170.
      (b) Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. J. Chem. Inf. Comput. Sci. 2004, 44, 1708.

    32. [32]

      Morgan, H. L. J. Chem. Doc. 1965, 5, 107.  doi: 10.1021/c160017a018

    33. [33]

      Rogers, D.; Hahn, M. J. Chem. Inf. Model. 2010, 50, 742.  doi: 10.1021/ci100050t

    34. [34]

      O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. J. Cheminf. 2011, 3, 33.  doi: 10.1186/1758-2946-3-33

    35. [35]

      Indigo-GGA Software Services 2014. https://github.com/ggasoft-ware/indigo.

    36. [36]

      Weininger, D. J. Chem. Inf. Comput. Sci. 1988, 28, 31.  doi: 10.1021/ci00057a005

    37. [37]

      Heller, S.; McNaught, A.; Stein, S.; Tchekhovskoi, D.; Pletnev, I. J. Cheminf. 2013, 5, 7.  doi: 10.1186/1758-2946-5-7

    38. [38]

      Jeliazkova, N.; Kochev, N. Mol. Inf. 2011, 30, 707.  doi: 10.1002/minf.201100028

    39. [39]

      Raymond, J. W.; Willett, P. J. Comput.-Aided Mol. Des. 2002, 16, 521.  doi: 10.1023/A:1021271615909

    40. [40]

      Rupp, M.; Tkatchenko, A.; Muller, K. R.; von Lilienfeld, O. A. Phys. Rev. Lett. 2012, 108, 058301.  doi: 10.1103/PhysRevLett.108.058301

    41. [41]

      (a) Hochuli, J.; Helbling, A.; Skaist, T.; Ragoza, M.; Koes, D. R. J. Mol. Graphics Modell. 2018, 84, 96.
      (b) Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D. R. J. Chem. Inf. Model. 2017, 57, 942.

    42. [42]

      Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631.  doi: 10.1126/science.aau5631

    43. [43]

      (a) Sutton, R. S. Mach. Learn. 1988, 3, 9.
      (b) François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M. G.; Pineau, J. Found. Trends Mach. Learn. 2018, 11, 219.

    44. [44]

      (a) Koski, T.; Noble, J. Mathematica Applicanda (Matematyka Stosowana) 2012, 40, 51.
      (b) Spiegelhalter, D. J. J. R. Statist. Soc. C 1998, 47, 115.

    45. [45]

      Quinlan, J. R. Mach. Learn. 1986, 1, 81.

    46. [46]

      (a) Domingos, P.; Pazzani, M. Mach. Learn. 1997, 29, 103.
      (b) Webb, G. I.; Boughton, J. R.; Wang, Z. Mach. Learn. 2005, 58, 5.
      (c) Maron, M. E. J. ACM 1961, 8, 404.

    47. [47]

      Cortes, C.; Vapnik, V. Mach. Learn. 1995, 20, 273.

    48. [48]

      (a) Achtert, E.; Böhm, C.; Kriegel, H.-P.; Kröger, P.; Müller-Gorman, I.; Zimek, A. In Finding Hierarchies of Subspace Clusters, Knowledge Discovery in Databases: PKDD 2006 Series 4213, Springer Berlin Heidelberg, Heidelberg, 2006, pp. 446~453.
      (b) Kriegel, H.-P.; Kröger, P.; Zimek, A. WIREs Data Mining Knowl. Discov. 2012, 2, 351.
      (c) Sibson, R. Comput. J. 1973, 16, 30.
      (d) Banerjee, A.; Dave, R. N. In Validating Clusters using the Hopkins Statistic, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No. 04CH37542), IEEE, Budapest, 2004, pp. 149~153.
      (e) Estivill-Castro, V. SIGKDD Explor. Newsl. 2002, 4, 65.

    49. [49]

      (a) Breiman, L. Mach. Learn. 2001, 45, 5.
      (b) Ho, T. K. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832.

    50. [50]

      Zhou, Z. H. Machine Learning, Tsinghua University Press, Beijing, 2016 (in Chinese).

    51. [51]

      Pedregosa, F.; Varoquaux, G.; Gramfort, V.; Michel, B.; Thirion, O.; Grisel, M.; Blondel, P.; Prettenhofer, R.; Weiss, V.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. J. Mach. Learn. Res. 2011, 12, 2825.

    52. [52]

      (a) Maass, W. Neural Net. 1997, 10, 1659.
      (b) Wang, W.; Pedretti, G.; Milo, V.; Carboni, R.; Calderoni, A.; Ramaswamy, N.; Spinelli, A. S.; Ielmini, D. Sci. Adv. 2018, 4, eaat4752.
      (c) Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S. R.; Masquelier, T.; Maida, A. Neural Netw. 2019, 111, 47.

    53. [53]

      McCulloch, W. S.; Pitts, W. Bull Math. Biophys. 1943, 5, 115.  doi: 10.1007/BF02478259

    54. [54]

      Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. J. Mach. Learn. Res. 2014, 15, 1929.

    55. [55]

      Li, W.; Matthew, Z.; Sixin, Z.; Yann Le, C.; Rob, F. In Proceedings of the 30th International Conference on Machine Learning, Proceedings of Machine Learning Research Series 28, Eds.: Dasgupta, S.; McAllester, D., Proceedings of Machine Learning Research, Atlanta, 2013, pp. 1058~1066.

    56. [56]

      Nair, V.; Hinton, G. E. In International Conference on Machine Learning, Proceedings of the 27th International Conference on Machine Learning, International Conference on Machine Learning Series 27, International Conference on Machine Learning, Haifa, 2010.

    57. [57]

      (a) Zhou, J.; Cui, G.; Zhang, Z. Y.; Yang, C.; Liu, Z. Y.; Wang, L. F.; Li, C. C.; Sun, M. arXiv e-prints 2018, arXiv: 1812.08434.
      (b) Zhang, Z. W.; Cui, P.; Zhu, W. W. IEEE Trans. Knowl. Data Eng. 2020, doi: 10.1109/TKDE.2020.2981333.

    58. [58]

      (a) Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. In Advances in Neural Information Processing Systems 28, Neural Information Processing Systems 2015, Eds.: Cortes, C.; Lawrence, N.; Lee D.; Sugiyama, M.; Garnett, R., Neural Information Processing Systems, 2015, pp. 2215~2223.
      (b) Coley, C. W.; Jin, W.; Rogers, L.; Jamison, T. F.; Jaakkola, T. S.; Green, W. H.; Barzilay, R.; Jensen, K. F. Chem. Sci. 2019, 10, 370.

    59. [59]

      Mitchell, J. B. O. Wires Comput. Mol. Sci. 2014, 4, 468.  doi: 10.1002/wcms.1183

    60. [60]

      Corey, E. J.; Wipke, W. T. Science 1969, 166, 178.  doi: 10.1126/science.166.3902.178

    61. [61]

      Muratov, E. N.; Bajorath, J.; Sheridan, R. P.; Tetko, I. V.; Filimonov, D.; Poroikov, V.; Oprea, T. I.; Baskin, I. I.; Varnek, A.; Roitberg, A.; Isayev, O.; Curtalolo, S.; Fourches, D.; Cohen, Y.; Aspuru-Guzik, A.; Winkler, D. A.; Agrafiotis, D.; Cherkasov, A.; Tropsha, A. Chem. Soc. Rev. 2020, 49, 3525.  doi: 10.1039/D0CS00098A

    62. [62]

      Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. J. Chem. Inf. Model. 2015, 55, 263.  doi: 10.1021/ci500747n

    63. [63]

      Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. Front. Environ. Sci. 2016, 3, 80.

    64. [64]

      (a) Ramsundar, B.; Liu, B.; Wu, Z.; Verras, A.; Tudor, M.; Sheridan, R. P.; Pande, V. J. Chem. Inf. Model. 2017, 57, 2068.
      (b) Koutsoukas, A.; Monaghan, K. J.; Li, X.; Huan, J. J. Cheminf. 2017, 9, 42.
      (c) Lenselink, E. B.; ten Dijke, N.; Bongers, B.; Papadatos, G.; van Vlijmen, H. W. T.; Kowalczyk, W.; Ijzerman, A. P.; van Westen, G. J. P. J. Cheminf. 2017, 9, 45.

    65. [65]

      (a) Subramanian, G.; Ramsundar, B.; Pande, V.; Denny, R. A. J. Chem. Inf. Model. 2016, 56, 1936.
      (b) Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Mol. Pharm. 2016, 13, 2524.
      (c) Lusci, A.; Pollastri, G.; Baldi, P. J. Chem. Inf. Model. 2013, 53, 1563.
      (d) Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. J. Chem. Inf. Model. 2015, 55, 208.

    66. [66]

      Ryu, S.; Kwon, Y.; Kim, W. Y. Chem. Sci. 2019, 10, 8438.  doi: 10.1039/C9SC01992H

    67. [67]

      Gaulton, A.; Hersey, A.; Nowotka, M.; Patrícia Bento, A.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L. J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M. P.; Overington, J. P.; Papadatos, G.; Smit, I.; Leach, A. L. Nucleic Acids Res. 2017, 45, 945.  doi: 10.1093/nar/gkw1074

    68. [68]

      (a) Fraczkiewicz, R.; Lobell, M.; Göller, A. H.; Krenz, U.; Schoenneis, R.; Clark, R. D.; Hillisch. A. J. Chem. Inf. Model. 2015, 55, 389.
      (b) Fraczkiewicz, R.; Lobell, M.; Göller, A. H.; Krenz, U.; Schoenneis, R.; Clark, R. D.; Hillisch, A. J. Chem. Inf. Model. 2015, 55, 389.

    69. [69]

      Roszak, R.; Beker, W.; Molga, K.; Grzybowski, B. A. J. Am. Chem. Soc. 2019, 141, 17142.  doi: 10.1021/jacs.9b05895

    70. [70]

      Yang, Q.; Li, Y.; Yang, J.-D.; Liu, Y. D.; Zhang, L.; Luo, S. Z.; Cheng, J.-P. Angew. Chem., Int. Ed. 2020, 59, 19282.  doi: 10.1002/anie.202008528

    71. [71]

      Yang, J.-D.; Xue, X.-S.; Ji, P.; Li, X.; Cheng, J.-P. Internet Bond-energy Databank (pKa and BDE): iBonD Home Page, http://ibond.chem.tsinghua.edu.cn or http://ibond.nankai.edu.cn.

    72. [72]

      Hall, L. H. J. Chem. Inf. Comput. Sci. 1995, 35, 1039.  doi: 10.1021/ci00028a014

    73. [73]

      Feng, C.; Sharman, E.; Ye, S.; Luo, Y.; Jiang, J. Sci. China:Chem. 2019, 62, 1698.  doi: 10.1007/s11426-019-9619-8

    74. [74]

      Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Proceedings of the 34th International Conference on Machine Learning, In Proceedings of Machine Learning Research Series 70, Eds.: Precup, D.; Teh, Y. W., Proceedings of Machine Learning Research, Sydney, 2017, pp. 1263~1272.

    75. [75]

      Ertl, P.; Lewis, R.; Martin, E.; Polyakov, V. arXiv e-prints 2017, arXiv: 1712.07449.

    76. [76]

      Liang, L.; Deng, C. L.; Zhang, Y. M.; Hua, Y.; Liu, H. C.; Lu, T.; Chen, Y. D. Prog. Pharm. Sci. 2020, 44, 18(in Chinese).

    77. [77]

      Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. Mol. Pharm. 2017, 14, 3098.  doi: 10.1021/acs.molpharmaceut.7b00346

    78. [78]

      Goodfellow, I. arXiv e-prints 2016, arXiv: 1701.00160.

    79. [79]

      Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.; Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy, D. A.; Kuznetsov, M. D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R. R.; Zhebrak, A.; Minaeva, L. I.; Zagribelnyy, B. A.; Lee, L. H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A. Nat Biotechnol. 2019, 37, 1038.  doi: 10.1038/s41587-019-0224-x

    80. [80]

      Yu, L. T.; Zhang, W. N.; Wang, J.; Yu, Y. arXiv e-prints 2016, arXiv: 1609.05473.

    81. [81]

      Jaques, N.; Gu, S.; Bahdanau, D.; Hernández-Lobato, J. M.; Turner, R. E.; Eck, D. arXiv e-prints 2016, arXiv: 1611.02796.

    82. [82]

      Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525.  doi: 10.1021/cr60274a001

    83. [83]

      Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.; Hopkins, A. L. Nat. Chem. 2012, 4, 90.  doi: 10.1038/nchem.1243

    84. [84]

      Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. J. Cheminf. 2017, 9, 48.  doi: 10.1186/s13321-017-0235-x

    85. [85]

      Benhenda, M. arXiv e-prints 2017, arXiv: 1708.08227.

    86. [86]

      (a) Metz, L.; Poole, B.; Pfau, D.; Sohl-Dickstein, J. arXiv e-prints 2016, arXiv: 1611.02163.
      (b) Unterthiner, T.; Nessler, B.; Seward, C.; Klambauer, G.; Heusel, M.; Ramsauer, H.; Hochreiter, S. arXiv e-prints 2017, arXiv: 1708.08819.

    87. [87]

      Corey, E. J.; Wipke, W. T.; Cramer, R. D.; Howe, W. J. J. Am. Chem. Soc. 1972, 94, 431.  doi: 10.1021/ja00757a021

    88. [88]

      Hendrickson, J. B. Recl. Trav. Chim. Pays-Bas. 1992, 111, 323.  doi: 10.1002/recl.19921110611

    89. [89]

      (a) Todd, M. H. Chem. Soc. Rev. 2005, 34, 247.
      (b) Szymkuć, S.; Gajewska, E. P.; Klucznik, T.; Molga, K.; Dittwald, P.; Startek, M.; Bajczyk, M.; Grzybowski, B. A. Angew. Chem., Int. Ed. 2016, 55, 5904.

    90. [90]

      de Almeida, A. F.; Moreira, R.; Rodrigues, T. Nat. Rev. Chem. 2019, 3, 589.  doi: 10.1038/s41570-019-0124-0

    91. [91]

      Kayala, M. A.; Azencott, C.-A.; Chen, J. H.; Baldi, P. J. Chem. Inf. Model. 2011, 51, 2209.  doi: 10.1021/ci200207y

    92. [92]

      Kayala, M. A.; Baldi, P. J. Chem. Inf. Model. 2012, 52, 2526.  doi: 10.1021/ci3003039

    93. [93]

      Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C. A.; Bekas, C.; Lee, A. A. ACS Cent. Sci. 2019, 5, 1572.  doi: 10.1021/acscentsci.9b00576

    94. [94]

      McDaniel, D. H.; Brown, H. C. J. Org. Chem. 1958, 23, 420.  doi: 10.1021/jo01097a026

    95. [95]

      (a) Friedman, M.; Wall, J. S. J. Am. Chem. Soc. 1964, 86, 3735.
      (b) Friedman, M.; Cavins, J. F.; Wall, J. S. J. Am. Chem. Soc. 1965, 87, 3672.
      (c) Friedman, M.; Wall, J. S. J. Org. Chem. 1966, 31, 2888.

    96. [96]

      Toropov, A. A.; Kudyshkin, V. O.; Voropaeva, N. L.; Ruban, I. N.; Rashidova, S. S. J. Struct. Chem. 2004, 45, 945.  doi: 10.1007/s10947-005-0084-8

    97. [97]

      Yu, X.; Yi, B.; Wang, X. Eur. Polym. J. 2008, 44, 3997.  doi: 10.1016/j.eurpolymj.2008.09.028

    98. [98]

      Morrill, J. A.; Biggs, J. H.; Bowman, C. N.; Stansbury, J. W. J. Mol. Graphics Modell. 2011, 29, 763.  doi: 10.1016/j.jmgm.2010.12.009

    99. [99]

      Schwöbel, J. A. H.; Wondrousch, D.; Koleva, Y. K.; Madden, J. C.; Cronin, M. T. D.; Schüürmann, G. Chem. Res. Toxicol. 2010, 23, 1576.  doi: 10.1021/tx100172x

    100. [100]

      Wondrousch, D.; Böhme, A.; Thaens, D.; Ost, N.; Schüürmann, G. J. Phys. Chem. Lett. 2010, 1, 1605.  doi: 10.1021/jz100247x

    101. [101]

    102. [102]

      Halberstam, N. M.; Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. Mendeleev Commun. 2002, 12, 185.  doi: 10.1070/MC2002v012n05ABEH001620

    103. [103]

      Harper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem. 2012, 4, 366.  doi: 10.1038/nchem.1297

    104. [104]

      Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186.  doi: 10.1126/science.aar5169

    105. [105]

      Singh, S.; Pareek, M.; Changotra, A.; Banerjee, S.; Bhaskararao, B.; Balamurugan, P.; Sunoj, R. B. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 1339.  doi: 10.1073/pnas.1916392117

    106. [106]

      Li, X.; Zhang, S.-Q.; Xu, L.-C.; Hong. X. Angew. Chem., Int. Ed. 2020, 59, 13253.  doi: 10.1002/anie.202000959

    107. [107]

      Sandfort, F.; Strieth-Kalthoff, F.; Kuhnemund, M.; Beecks, C.; Glorius, F. Chem 2020, 6, 1.  doi: 10.1016/j.chempr.2019.12.023

    108. [108]

      Lin, A. I.; Madzhidov, T. I.; Klimchuk, O.; Nugmanov, R. I.; Antipin, I. S.; Varnek, A. J. Chem. Inf. Model. 2016, 56, 2140.  doi: 10.1021/acs.jcim.6b00319

    109. [109]

      Marcou, G.; Aires, de Sousa. J.; Latino, D. A. R. S.; de Luca, A.; Horvath, D.; Rietsch, V.; Varnek, A. J. Chem Inf. Model. 2015, 55, 239.  doi: 10.1021/ci500698a

    110. [110]

      Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.; Jensen, K. F. ACS Cent. Sci. 2018, 4, 1465.  doi: 10.1021/acscentsci.8b00357

    111. [111]

      Struebing, H.; Ganase, Z.; Karamertzanis, P.; Siougkrou, E.; Haycock, P.; Piccione, P. M.; Armstrong, A.; Galindo, A.; Adjiman, C. S. Nat. Chem. 2013, 5, 952.  doi: 10.1038/nchem.1755

    112. [112]

      Häse, F.; Roch, L. M.; Kreisbeck, C.; Aspuru-Guzik, A. ACS Cent. Sci. 2018, 4, 1134.  doi: 10.1021/acscentsci.8b00307

    113. [113]

      (a) Baskin, I. I.; Madzhidov, T. I.; Antipin, I. S.; Varnek, A. A. Russ. Chem. Rev. 2017, 86, 1127.
      (b) Cook, A.; Johnson, A. P.; Law, J.; Mirzazadeh, M.; Ravitz, O.; Simon, A. Science 2012, 2, 79.
      (c) Zefirov, N. S.; Gordeeva, E. V. Russ. Chem. Rev. 1987, 56, 1002.

    114. [114]

      Coley, C. W.; Green, W. H.; Jensen, K. F. Acc. Chem. Res. 2018, 51, 1281.  doi: 10.1021/acs.accounts.8b00087

    115. [115]

      Varnek, V.; Baskin, I. I. In Systems Medicine, Vol. 2, Eds.: Wolkenhauer, O., Academic Press, Oxford, 2021, pp. 190~197.

    116. [116]

      Law, J.; Zsoldos, Z.; Simon, A.; Reid, D.; Liu, Y.; Khew, S. Y.; Johnson, A. P.; Major, S.; Wade, R. A.; Ando, H. Y. J. Chem. Inf. Model. 2019, 49, 593.

    117. [117]

      Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F. ACS Cent. Sci. 2017, 3, 1237.  doi: 10.1021/acscentsci.7b00355

    118. [118]

      Liu, B.; Ramsundar, B.; Kawthekar, P.; Shi, J.; Gomes, J.; Luu Nguyen, Q.; Ho, S.; Sloane, J.; Wender, P.; Pande, V. ACS Cent. Sci. 2017, 3, 1103.  doi: 10.1021/acscentsci.7b00303

    119. [119]

      Lin, L. J.; Xu, Y. J.; Pei, J. F.; Lai, L, H. Chem. Sci. 2020, 11, 3355.  doi: 10.1039/C9SC03666K

    120. [120]

      Schwaller, P.; Petraglia, R.; Zullo, V.; Nair, V. H.; Haeuselmann, R. A.; Pisoni, R.; Bekas, C.; Iuliano, A.; Laino, T. Chem. Sci. 2020, 11, 3316.  doi: 10.1039/C9SC05704H

    121. [121]

      (a) Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.
      (b) Satoh, H.; Funatsu, K. J. Chem. Inf. Comput. Sci. 1995, 35, 34.

    122. [122]

      Schwaller, P.; Vaucher, A.; Nair, V. H.; Laino, T.; Reymond, J.-L. ChemRxiv Preprint 2019, https://doi.org/10.26434/chemrxiv.9897365.v2.  doi: 10.26434/chemrxiv.9897365.v2

    123. [123]

      (a) Trobe, M.; Burke, M. D. Angew. Chem., Int. Ed. 2018, 57, 4192.
      (b) Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M. Angew. Chem., Int. Ed. 2015, 54, 3449.

    124. [124]

      Sans, V.; Cronin, L. Chem. Soc. Rev. 2016, 45, 2032.  doi: 10.1039/C5CS00793C

    125. [125]

      Houben, C.; Lapkin, A. A. Curr. Opin. Chem. Eng. 2015, 9, 1.  doi: 10.1016/j.coche.2015.07.001

    126. [126]

      Perera, D.; Tucker, J. W.; Brahmbhatt, S.; Helal, C. J.; Chong, A.; Farrell, W.; Richardson, P.; Sach, N. W. Science 2018, 359, 429.  doi: 10.1126/science.aap9112

    127. [127]

      Cortés-Borda, D.; Wimmer, E.; Gouilleux, B.; Barré, E.; Oger, N.; Goulamaly, L.; Peault, L.; Charrier, B.; Truchet, C.; Giraudeau, P.; Rodriguez-Zubiri, M.; Le Grognec, E.; Felpin, F.-X. J. Org. Chem. 2018, 83, 14286.  doi: 10.1021/acs.joc.8b01821

    128. [128]

      Steiner, S.; Wolf, J.; Glatze, S.; Andreou, A.; Granda, J. M.; Keenan, G.; Hinkley, T.; Aragon-Camarasa, G.; Kitson, P. J.; Angelone, D.; Cronin, L. Science 2019, 363, eaav2211.  doi: 10.1126/science.aav2211

    129. [129]

      Coley, C. W.; Thomas D. A.; Lummiss, J. A. M.; Jaworski, J. N.; Breen, C. P.; Schultz, V.; Hart, T.; Fishman, J. S.; Rogers, L.; Gao, H.; Hicklin, R. W.; Plehiers, P. P.; Byington, J.; Piotti, J. S.; Green, W. H.; Hart, A. J.; Jamison, T. F.; Jensen, K, F. Science 2019, 365, eaax1566.  doi: 10.1126/science.aax1566

    130. [130]

      Chatterjee, S.; Guidi, M.; Seeberger, P. H.; Gilmore. K. Nature 2020, 579, 379.  doi: 10.1038/s41586-020-2083-5

    131. [131]

      (a) Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. J. Med. Chem. 2012, 55, 6582.
      (b) Sun, J.; Jeliazkova, N.; Chupakhin, V.; Golib-Dzib, J.-F.; Engkvist, O.; Carlsson, L.; Wegner, J.; Ceulemans, H.; Georgiev, I.; Jeliazkov, V.; Kochev, N.; Ashby, T. J.; Chen, H. J. Cheminf. 2017, 9, 17.

    132. [132]

      Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; Li, F.-F. Int. J. Comput. Vision 2015, 115, 211.  doi: 10.1007/s11263-015-0816-y

    133. [133]

      Miller, G. A. Commun. ACM 1995, 38, 39.

    134. [134]

      Wu, Z.; Ramsundar, B.; Feinberg, Evan N.; Gomes, J.; Geniesse, C.; Pappu, A. S.; Leswing, K.; Pande, V. Chem. Sci. 2018, 9, 513.  doi: 10.1039/C7SC02664A

    135. [135]

      Kitchin, J. R. Nat. Cat. 2018, 1, 230.  doi: 10.1038/s41929-018-0056-y

    136. [136]

      Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.  doi: 10.1038/nature17439

    137. [137]

      Struble, T. J.; Alvarez, J. C.; Brown, S. P.; Chytil, M.; Cisar, J.; DesJarlais, R. L.; Engkvist, O, ; Frank, S. A.; Greve, D. R.; Griffin, D. J.; Hou, X. J.; Johannes, J. W.; Kreatsoulas, C.; Lahue, B.; Mathea, M.; Mogk, G.; Nicolaou, C. A.; Palmer, A. D.; Price, D. J.; Robinson, R. I.; Salentin, S.; Xing, L.; Jaakkola, T.; Green, W. H.; Barzilay, R.; Coley, C. W.; Jensen, K. F. J. Med. Chem. 2020, 63, 8667.  doi: 10.1021/acs.jmedchem.9b02120

    138. [138]

      Caramelli, D.; Salley, D.; Henson, A.; Camarasa, G. A.; Sharabi, S.; Keenan, G.; Cronin, L. Nat. Commun. 2018, 9, 3406.  doi: 10.1038/s41467-018-05828-8

    139. [139]

      (a) Goodell, J. R.; McMullen, J. P.; Zaborenko, N.; Maloney, J. R.; Ho, C.-X.; Jensen, K. F.; Porco, J. A. Jr.; Beeler, A. B. J. Org. Chem. 2009, 74, 6169.
      (b) Heublein, N.; Moore, J. S.; Smith, C. D.; Jensen, K. F. RSV Adv. 2014, 4, 63627.
      (c) Weber, A.; von Roedern, E.; Stilz, H. U. J. Comb. Chem. 2005, 7, 178.

    140. [140]

      Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, A. P. In Advances in Neural Information Processing Systems 28, Neural Information Processing Systems 2015, Eds.: Cortes, C.; Lawrence, N.; Lee D.; Sugiyama, M.; Garnett, R., Neural Information Processing Systems, 2015, pp. 2224~2232.

    141. [141]

      Jankowski, N., Duch, W.; Gra̧bczewski, K. Meta-Learning in Computational Intelligence, Springer, Berlin, 2011.

    142. [142]

      Graves, A.; Wayne, G.; Danihelka, I. arXiv e-prints 2014, arXiv: 1410.5401.

    143. [143]

      Duan, Y.; Andrychowicz, M.; Stadie, B. C.; Ho, J.; Schneider, J.; Sutskever, I.; Abbeel, P.; Zaremba W. In Advances in Neural Information Processing Systems 30, Neural Information Processing Systems 2017, Eds.: Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Neural Information Processing Systems, 2017, pp. 1087~1098.

    144. [144]

      Lake, B. M.; Salakhutdinov, R.; Tenenbaum, J. B. Science 2015, 350, 1332.  doi: 10.1126/science.aab3050

    145. [145]

      Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. In Advances in Neural Information Processing Systems 29, Neural Information Processing Systems 2016, Eds.: Lee, D.; Sugiyama, M.; Luxburg, U.; Guyon, I.; Garnett, R., Neural Information Processing Systems, 2016, pp. 3630~3638.

    146. [146]

      Altae-Tran, H.; Ramsundar, B.; Pappu, A. S.; Pande, V. ACS Cent. Sci. 2017, 3, 283.  doi: 10.1021/acscentsci.6b00367

    147. [147]

      (a) Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. In Proceedings of The 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research Series 48, Eds.: Balcan, M. F.; Weinberger, K. Q., Proceedings of Machine Learning Research, New York, 2016, pp. 1842~1850.
      (b) Ha, H.; Hwang, U.; Hong, Y.; Yoon, S. arXiv e-prints 2018. arXiv: 1805.10768.

  • 加载中
    1. [1]

      Heng Zhang Ying Ma Shiling Yuan . Machine Learning-based Prediction of Antifouling Performance in Polymer Materials: An Integrated Molecular Simulation Experiment. University Chemistry, 2026, 41(1): 346-353. doi: 10.12461/PKU.DXHX202506015

    2. [2]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    3. [3]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-0. doi: 10.3866/PKU.WHXB202309041

    4. [4]

      Jia Zhou . Design and Practice of a Comprehensive Computational Chemistry Experiment Based on High-Throughput Computation and Machine Learning. University Chemistry, 2025, 40(9): 69-75. doi: 10.12461/PKU.DXHX202411067

    5. [5]

      Jingjie Rao Wenwen Cai Jiahui Zhao Xu Yang Ziyan Yan Tianjin Zhang Hang Zhang . Digital Exploration of Analytical Chemistry Experiments in the Context of Machine Learning and Big Data: A Case Study on Water Hardness Measurement. University Chemistry, 2026, 41(1): 276-288. doi: 10.12461/PKU.DXHX202504104

    6. [6]

      Jianqiang Zheng Yongbin Huang Wencan Ming Yingju Liu . Intelligent Reaction Optimization: Synthesis of Acetylsalicylic Acid Driven by Deep Learning and Optimization Algorithms. University Chemistry, 2025, 40(9): 87-98. doi: 10.12461/PKU.DXHX202411062

    7. [7]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    8. [8]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    9. [9]

      Songmei Ma Ying Zhang Gang Liu Wenlong Xu . Comprehensive Experiment Teaching Exploration and Practice in Polymeric Materials Integrating Research-Driven Learning, Creativity-Enhanced Competency, and Science-Education Synergy: A Case Study of Machine Learning-Assisted Intelligent Handwriting Recognition System. University Chemistry, 2026, 41(1): 289-297. doi: 10.12461/PKU.DXHX202509083

    10. [10]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    11. [11]

      Zuoyong Li Haoxiang Tu Mingwei Ding Meijun Liu Ting Yang . Innovative Teaching Reform Study on the Synthesis of Silver Nanoparticles Based on Machine Learning and Microfluidic Technology. University Chemistry, 2026, 41(1): 64-75. doi: 10.12461/PKU.DXHX202505088

    12. [12]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    13. [13]

      Jiaqi Chen Liang Chen Xiaocui Wei Yankai Wang Yahui Chang Xinghao Ji Haoyu Yang Yue Sun Yawen Wang Xiufeng Shi Xu Wu . Digital Empowerment for Foundational Excellence: A Digitally Enhanced Coordination Titration Experiment of Heating Pack Component Analysis. University Chemistry, 2026, 41(1): 382-393. doi: 10.12461/PKU.DXHX202506008

    14. [14]

      Weigang Zhu Jianfeng Wang Qiang Qi Jing Li Zhicheng Zhang Xi Yu . Curriculum Development for Cheminformatics and AI-Driven Chemistry Theory toward an Intelligent Era. University Chemistry, 2025, 40(9): 34-42. doi: 10.12461/PKU.DXHX202412002

    15. [15]

      Yueming Zhou Xin Qiu Xin Zhou Xiaotian Wan Mofan Zhang Feng Li Xinxin Shao Peng Ding Xizhen Liang . Intelligent Visualization of Potassium Dichromate Reflux Method for Determination of Chemical Oxygen Demand. University Chemistry, 2026, 41(1): 85-94. doi: 10.12461/PKU.DXHX202506021

    16. [16]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    17. [17]

      Lingyu Chang Yanfang Lang Yuyan Zhu Jie Wang Ying Guo Die Wang Peng Ding Yueming Zhou Zhixiang Gong Shujuan Liu . Machine Learning-Optimized Microcolumn Ion Exchange Chromatography for Trace Arsenic Determination. University Chemistry, 2026, 41(1): 76-84. doi: 10.12461/PKU.DXHX202506023

    18. [18]

      Zhican Lu Junyu Li Zijun Huang Ziyi Zeng Chi Huang Chuqing Gong Yalan Zhong . Digital Experimental Design of Decomposition of Ammonium Perchlorate Catalyzed by MOFs. University Chemistry, 2026, 41(1): 133-143. doi: 10.12461/PKU.DXHX202506017

    19. [19]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    20. [20]

      Xiaodong Chen Yumin Zhang . An Improved Simulated Annealing Algorithm for Predicting the Molecular Formulas of Organic Compounds. University Chemistry, 2025, 40(9): 19-24. doi: 10.12461/PKU.DXHX202408095

Metrics
  • PDF Downloads(542)
  • Abstract views(16889)
  • HTML views(4525)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return