Citation: Chen Demao, Sun Yuanyuan, Dong Daoqing, Han Qingqing, Wang Zuli. Visible-Light Induced Sulfonylation of Nitroolefins for the Synthesis of Vinyl Sulfones under Photocatalyst Free Conditions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4267-4273. doi: 10.6023/cjoc202006025 shu

Visible-Light Induced Sulfonylation of Nitroolefins for the Synthesis of Vinyl Sulfones under Photocatalyst Free Conditions

  • Corresponding author: Wang Zuli, wangzulichem@163.com
  • 共同第一作者(These authors contributed equally to this work).
  • Received Date: 15 June 2020
    Revised Date: 29 July 2020
    Available Online: 5 August 2020

    Fund Project: the National Natural Science Foundation of China 21772107the Key Research and Development Plan of Shandong Province 2019GSF108017Project supported by the National Natural Science Foundation of China (No. 21772107), and the Key Research and Development Plan of Shandong Province (No. 2019GSF108017)

Figures(4)

  • An eco-friendly visible light-induced approach for the synthesis of vinyl sulfones from the reaction of nitroolefins with sulfinic acid under photocatalyst free conditions was developed. Simple operation, mild reaction conditions, broad substrate scope and good yields of the desired products made this transformation have an excellent prospect. The anti-microbial activity test showed that some of the desired products had moderate inhibitory rate against V. mali and C. glecosporioides.
  • 加载中
    1. [1]

      (a) Fung, E.; Chua, K.; Ganz, T.; Nemeth, E.; Ruchala, P. Bioorg. Med. Chem. Lett. 2015, 25, 763.
      (b) Lavecchia, A.; Di Giovanni, C.; Pesapane, A.; Montuori, N.; Ragno, P.; Martucci, N. M.; Masullo, M.; De Vendittis, E.; Novellino, E. J. Med. Chem. 2012, 55, 4142.
      (c) Nakao, Y.; Fusetani, N. J. Nat. Prod. 2007, 70, 689.
      (d) Goudou, F.; Petit, P.; Moriou, C.; Gros, O.; Al-Mourabit, A. J. Nat. Prod. 2017, 80, 1693.
      (e) Gordon, C. P.; Griffith, R.; Keller, P. A. Med. Chem. 2007, 3, 199.
      (f) Meadows, D. C.; Sanchez, T.; Neamati, N.; North, T. W.; Hague, J. G. Bioorg. Med. Chem. 2007, 15, 1127.

    2. [2]

      (a) Simpkins, N. S. Tetrahedron 1990, 46, 6951.
      (b) Chen, G.-Y.; Lu, Y. Synthesis 2013, 45, 1654.
      (c) Cheng, F.; Wang, H.; He, W.; Sun, B.; Zhao, J.; Qu, J.; Wang, Q. ACS Sustainable Chem. Eng. 2019, 7, 9112.

    3. [3]

      (a) Truce, W. E.; Goralski, C. T. J. Org. Chem. 1971, 36, 2536.
      (b) Posner, G. H.; Brunelle, D. J. J. Org. Chem. 1972, 37, 3547.
      (c) Hoogenboom, B. E.; ElFaghi, M. S.; Fink, S. C.; Ihrig, P. I.; Langsjoen, A. N.; Linn, C. J.; Maehling, K. L. J. Org. Chem. 1975, 40, 880.
      (d) Back, T. G.; Collins, S.; Krishna, M. V.; Law, K. W. J. Org. Chem. 1987, 52, 4258.
      (e) Kamigata, N.; Sawada, H.; Kobayashi, M. J. Org. Chem. 1983, 48, 3793.
      (f) Huang, X.; Duan, D.; Zheng, W. J. Org. Chem. 2003, 69, 1958.
      (g) Guan, Z. H.; Zuo, W.; Zhao, L. B.; Ren, Z. H.; Liang, Y. M. Synthesis 2007, 1465.
      (h) Ochiai, M.; Kitagawa, Y.; Toyonari, M.; Uemura, K.; Oshima, K.; Shiro, M. J. Org. Chem. 1997, 62, 8001.
      (i) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M.; Bernini, R. J. Org. Chem. 2004, 69, 5608.
      (j) Battace, A.; Zair, T.; Doucet, H.; Santelli, M. Synthesis 2006, 3495.
      (k) Bian, M.; Xu, F.; Ma, C. Synthesis 2007, 2951.
      (l) Truce, W.; Wolf, G. C. J. Org. Chem. 1971, 36, 1727.
      (m) Amiel, Y. J. Org. Chem. 1970, 36, 3691.
      (n) Peng, L.; Hu, Z.; Tang, Z.; Jiao, Y.; Xu, X. Chin. Chem. Lett. 2019, 30, 1481.
      (o) Keshari, T.; Kapoorr, R.; Yadav, L. D. S. Eur. J. Org. Chem. 2016, 2695.

    4. [4]

      (a) Nair, V.; Augustine, A.; George, T. G.; Nair, L. G. Tetrahedron Lett. 2001, 42, 6763.
      (b) Katrun, P.; Chiampanichayakul, S.; Korworapan, K.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Kuhakarn, C. Eur. J. Org. Chem. 2010, 2010, 5633.
      (c) Kamigata, N.; Sawada, H.; Kobayashi, M. J. Org. Chem. 1983, 48, 3793.
      (d) Taniguchi, N. Synlett 2011, 1308.
      (e) Nair, V.; Augustine, A.; Suja, T. D. Synthesis 2002, 2259.
      (f) Das, B.; Lingaiah, M.; Damodar, K.; Bhunia, N. Synthesis 2011, 2941.
      (g) Sawangphon, T.; Katrun, P.; Chaisiwamongkhol, K.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Soorukram, D.; Kuhakarn, C. Synth. Commun. 2013, 43, 1692.
      (h) Tang, S.; Wu, Y.; Liao, W.; Bai, R.; Liu, C.; Lei, A. Chem. Commun. 2014, 50, 4496.
      (i) Zhang, N.; Yang, D.; Wei, W.; Yuan, L.; Cao, Y.; Wang, H. RSC Adv. 2015, 5, 37013.
      (j) Luo, Y. C.; Pan, X. J.; Yuan, G. Q. Tetrahedron 2015, 71, 2119.
      (k) Xue, Q.; Mao, Z.; Shi, Y.; Mao, H.; Cheng, Y.; Zhu, C. Tetrahedron Lett. 2012, 53, 1851.
      (l) Chawla, R.; Kapoor, R.; Singh, A. K.; Yadav, L. D. S. Green Chem. 2012, 14, 1308.
      (m) Liang, S.; Zhang, R. Y.; Wang, G.; Chen, S. Y.; Yu, X. Q. Eur. J. Org. Chem. 2013, 2013, 7050.
      (n) Katrun, P.; Hlekhlai, S.; Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Soorukrama, D.; Kuhakarn, C. Org. Biomol. Chem. 2015, 13, 4785
      (o) Taniguchi, N. Tetrahedron 2014, 70, 1984.

    5. [5]

      Nie, G.; Deng, X. C.; Lei, X.; Hu, Q. Q.; Chen, Y. F. RSC Adv. 2016, 6, 75277.  doi: 10.1039/C6RA17842A

    6. [6]

      Zhan, Z. Z.; Ma, H. J.; Wei, D. D.; Pu, J. H.; Zhang, Y. X.; Huang, G. S. Tetrahedron Lett. 2018, 59, 1446.  doi: 10.1016/j.tetlet.2018.02.078

    7. [7]

      Zhao, Y.; Lai, Y. L.; Du, K. S.; Lin, D. Z.; Huang, J. M. J. Org. Chem. 2017, 82, 9655.  doi: 10.1021/acs.joc.7b01741

    8. [8]

      Rong, G. W.; Mao, J. C.; Yan, H.; Zheng, Y.; Zhang, G. Q. J. Org. Chem. 2015, 80, 4697.  doi: 10.1021/acs.joc.5b00558

    9. [9]

      Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.  doi: 10.1126/science.1161976

    10. [10]

      (a) Chen, Y. Y.; Lu, L. Q.; Yu, D. G.; Zhu, C. J.; Xiao, W. J. Sci. China Chem. 2019, 62, 24-57.
      (b) Luo, K.; Yang, W. C.; Wu, L. Asian J. Org. Chem. 2017, 6, 350.
      (c) Huang, C.; Li, X. B.; Tung, C. H.; Wu, L. Z. Chem.-Eur. J. 2018, 24, 11530.
      (d) Chen, Y.; Zhao, H.; Cheng, D.; Li X.; Xu X. Chin. J. Org. Chem. 2020, 40, 1297(in Chinese).
      (陈跃峰, 赵赫, 程冬萍, 李小年, 许孝良, 有机化学, 2020, 40, 1297.)
      (e) Capaldo, L.; Ravelli, D. Eur. J. Org. Chem. 2017, 2056.
      (f) Chen, J. R.; Yan, D. M.; Wei, Q.; Xiao, W. J. ChemPhotoChem 2017, 1, 148.
      (g) Peng, S.; Lin, Y.; He, W. Chin. J. Org. Chem. 2020, 40, 541(in Chinese).
      (彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
      (h) Chen, L.; Liang, J.; Chen, Z. Y.; Chen, J.; Yan, M.; Zhang, X. J. Adv. Synth. Catal. 2019, 361, 956.
      (i) Dong, D. Q.; Li, L. X.; Li, G. H.; Deng, Q.; Wang, Z. L.; Long, S. Chin. J. Catal. 2019, 40, 1494.
      (j) Kong, Y.; Xu, W.; Ye, F.; Weng, J. Chin. J. Org. Chem. 2019, 39, 3065(in Chinese).
      (孔瑶蕾, 徐雯秀, 叶飞霞, 翁建全, 有机化学, 2019, 39, 3065.)
      (k) Xiao, L.; Li, J.; Wang, T. Acta Chim. Sinica 2019, 77, 841.
      (l) Chen, Y.; Chang, L.; Zuo, Z. Acta Chim. Sinica 2019, 77, 794.
      (m) Yuan, Y.; Dong, W. H.; Gao, X. S.; Xie, X. M.; Curran, D. P.; Zhang, Z. G. Chin. J. Chem. 2018, 36, 1035.
      (o) Wang, D. H.; Zhang, L.; Luo, S. Z. Chin. J. Chem. 2018, 36, 311.

    11. [11]

      (a) Zhu, J.; Yang, W. C.; Wang, X. D.; Wu, L. Adv. Synth. Catal. 2018, 360, 386.
      (b) Li, Y.; Miao, T.; Li, P. H.; Wang, L. Org. Lett. 2018, 20, 1735.
      (c) Xie, L. Y.; Fang, T. G.; Tan, J. X.; Zhang, B.; Cao, Z.; Yang, L. H.; He, W. M. Green Chem. 2019, 21, 3858.
      (d) Dong, D. Q.; Hao, S. H.; Yang, D. S.; Li, L. X.; Wang, Z. L. Eur. J. Org. Chem. 2017, 2017, 6576.
      (e) Li, G.; Gan, Z.; Kong, K.; Dou, X.; Yang, D. Adv. Synth. Catal. 2019, 361, 1808.
      (f) Qiu, G. Y. S.; Li, Y. W.; Wu, J. Org. Chem. Front. 2016, 3, 1011.
      (g) Lima, C. G. S.; Lima, T. D. M.; Duarte, M.; Jurberg, I. D.; Paixão, M. W. ACS Catal. 2016, 6, 1389.
      (h) Duan, K.; Yan, X. F.; Liu, Y. J.; Li, Z. D. Adv. Synth. Catal. 2018, 360, 2781.
      (i) Xie, L. Y.; Chen, Y. L.; Qin, L.; Wen, Y.; Xie, J. W.; Tan, J. X.; Huang, Y.; Cao, Z.; He, W. M. Org. Chem. Front. 2019, 6, 3950.

    12. [12]

      Guo, W.; Tao, K. L.; Tan, W.; Zhao, M. M.; Zheng, L. Y.; Fan, X. L. Org. Chem. Front. 2019, 6, 2048.  doi: 10.1039/C8QO01353E

    13. [13]

      Zhu, X. J.; Xie, X. Y.; Li, P. H.; Guo, J. Q.; Wang, L. Org. Lett. 2016, 18, 1546.  doi: 10.1021/acs.orglett.6b00304

    14. [14]

      Yang, D.; Huang, B.; Wei, W.; Li, J.; Lin, G.; Liu, Y.; Ding, J.; Sun, P.; Wang, H. Green Chem. 2016, 18, 5630.  doi: 10.1039/C6GC01403H

    15. [15]

      Meyer, A. U.; Jäger, S.; Hari, D. P.; König, B. Adv. Synth. Catal. 2015, 357, 2050.  doi: 10.1002/adsc.201500142

    16. [16]

      Liu, X.; Cong, T.; Liu, P.; Sun, P. Org. Biomol. Chem. 2016, 14, 9416.  doi: 10.1039/C6OB01569G

    17. [17]

      (a) Cai, S.; Xu, Y.; Chen, D.; Li, L.; Chen, Q.; Huang, M.; Weng, W. Org. Lett. 2016, 18, 2990.
      (b) Dong, D. Q.; Chen, D. M.; Sun, Y. Y.; Han, Q. Q.; Wang, Z. L.; Xu, X. M.; Yu, X. Y. Chin. J. Org. Chem. 2020, 40, 1766(in Chinese).
      (董道青, 李光辉, 陈德茂, 孙媛媛, 韩晴晴, 王祖利, 徐鑫明, 于贤勇, 有机化学, 2020, 40, 1766.)
      (c) Yan, S.; Dong, D. Q.; Xie, C.; Wang, W.; Wang, Z. L. Chin. J. Org. Chem. 2019, 39, 2560.
      (d) Li, G. H.; Han, Q. Q.; Sun, Y. Y.; Chen, D. M.; Wang, Z. L.; Xu, X. M.; Yu, X. Y. Chin. Chem. Lett., 2020, 31, 3255.
      (e) Li, G. H.; Dong, D. Q.; Deng, Q.; Yan, S. Q.; Wang, Z. L. Synthesis 2019, 51, 3313.
      (f) Dong, D. Q.; Chen, W. J.; Yang, Y.; Gao, X.; Wang, Z. L. ChemistrySelect 2019, 4, 2480.
      (g) Li, G. H.; Dong, D. Q.; Yu, X. Y.; Wang, Z. L. New J. Chem. 2019, 43, 1667.
      (h) Li, G. H.; Dong, D. Q.; Yang, Y.; Yu, X. Y.; Wang, Z. L. Adv. Synth. Catal. 2019, 361, 832.
      (i) Dong, D.; Sun, Y.; Li, G.; Yang, H.; Wang, Z.; Xu, X. Chin. J. Org. Chem. 2020, 40, 4071(in Chinese).
      (董道青, 孙媛媛, 李光辉, 杨欢, 王祖利, 徐鑫明, 有机化学, 2020, 40, 4071.)
      (j) Han, Q. Q.; Li, G. H.; Sun, Y. Y.; Chen, D. M.; Wang, Z. L.; Yu, X. Y.; Xu, X. M. Tetrahedron Lett. 2020, 61, 151704.
      (k) Dong, D. Q.; Yang, H.; Shi, J. L.; Si, W. J.; Wang, Z. L.; Xu, X. M. Org. Chem. Front. 2020, 7, 2538.

    18. [18]

      Hong, G. F.; Yuan, J. W.; Dong, Z. H.; Xiao, Y. M.; Mao, P.; Qu, L. B., Phosphorus Sulfur 2018, 193, 771.  doi: 10.1080/10426507.2018.1513518

    19. [19]

      Gui, Q. W.; Han, K.; Liu, Z. L.; Su, Z. H.; He, X. L.; Jiang, H. M.; Tian, B. F.; Li, Y. Y. Org. Biomol. Chem. 2018, 16, 5748.  doi: 10.1039/C8OB01502C

    20. [20]

      Baliah, V.; Seshapathirao, M. J. Org. Chem. 1959, 24, 867.  doi: 10.1021/jo01088a610

    21. [21]

      Chen, H.; Wedi, P.; Meyer, T.; Tavakoli, G.; van Gemmeren, M. Angew. Chem., Int. Ed. 2018, 57, 2497.  doi: 10.1002/anie.201712235

    22. [22]

      Hu, D. Q.; Bai, F. C.; Liu, Y. Y.; Wan, J. P. Chin. J. Chem. 2016, 34, 1053.  doi: 10.1002/cjoc.201600337

    23. [23]

      Chen, J.; Mao, J. C.; Zheng, Y.; Liu, D. F.; Rong, G. W.; Yan, H.; Zhang, C.; Shi, D. Q. Tetrahedron 2015, 71, 5059.  doi: 10.1016/j.tet.2015.05.115

    24. [24]

      Mao, S.; Gao, Y. R.; Zhu, X. Q.; Guo, D. D.; Wang, Y. Q. Org. Lett. 2015, 17, 1692.  doi: 10.1021/acs.orglett.5b00461

    25. [25]

      Aegurla, B.; Peddinti, R. K. Asian J. Org. Chem. 2018, 7, 946.  doi: 10.1002/ajoc.201700696

  • 加载中
    1. [1]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    4. [4]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    5. [5]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    6. [6]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    7. [7]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    8. [8]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    9. [9]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    10. [10]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    11. [11]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    12. [12]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    13. [13]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    14. [14]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    15. [15]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    16. [16]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    17. [17]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    18. [18]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    19. [19]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    20. [20]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

Metrics
  • PDF Downloads(43)
  • Abstract views(3038)
  • HTML views(427)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return